The minimum possible volume size of it μ-way (v, k, t) trades

被引:0
|
作者
Golalizadeh, Somayyeh [1 ]
Soltankhah, Nasrin [1 ]
机构
[1] Alzahra Univ, Fac Math Sci, POB 19834, Tehran, Iran
关键词
packing; trade; volume; foundation; GROUP-DIVISIBLE DESIGNS; LARGE SETS; BLOCK SIZE-3; DISJOINT PACKINGS; SPECTRUM;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A mu-way (v, k, t) trade is a pair T = (X, {T-1, T2 ...,T-mu}) such that for each t -subset of v -set X the number of blocks containing this t -subset is the same in each T, (1 < i < it). In the other words for each 1 < i < j <,, (X, {T,,T,}) is a (v, k, t) trade. There are many questions concerning p. -way trades. The main question is about the minimum volume and minimum foundation size of pt -way (v, k, t) trades. In this paper, we determine the minimum volume and minimum foundation size of p. -way (v,t 1, t) trades for each integer number mu > 3 and t = 2.
引用
收藏
页码:211 / 224
页数:14
相关论文
共 50 条
  • [21] Approximating the minimum k-way cut in a graph via minimum 3-way cuts
    Zhao, L
    Nagamochi, H
    Ibaraki, T
    [J]. JOURNAL OF COMBINATORIAL OPTIMIZATION, 2001, 5 (04) : 397 - 410
  • [22] Approximating the Minimum k-way Cut in a Graph via Minimum 3-way Cuts
    Liang Zhao
    Hiroshi Nagamochi
    Toshihide Ibaraki
    [J]. Journal of Combinatorial Optimization, 2001, 5 : 397 - 410
  • [23] Approximating the minimum k-way cut in a graph via minimum 3-way cuts
    Zhao, L
    Nagamochi, H
    Ibaraki, T
    [J]. ALGORITHMS AND COMPUTATIONS, 2000, 1741 : 373 - 382
  • [24] On the Existence of d-Homogeneous -Way (v,3,2) Steiner Trades
    Golalizadeh, S.
    Soltankhah, N.
    [J]. GRAPHS AND COMBINATORICS, 2019, 35 (02) : 471 - 478
  • [25] On the minimum size of representative volume element: An experimental investigation
    Cheng Liu
    [J]. Experimental Mechanics, 2005, 45 (3) : 238 - 243
  • [26] On the minimum size of representative volume element: An experimental investigation
    Liu, C
    [J]. EXPERIMENTAL MECHANICS, 2005, 45 (03) : 238 - 243
  • [27] On (Kq, k) vertex stable graphs with minimum size
    Fouquet, J. -L.
    Thuillier, H.
    Vanherpe, J. -M.
    Wojda, A. P.
    [J]. DISCRETE MATHEMATICS, 2012, 312 (14) : 2109 - 2118
  • [28] t Kp-saturated graphs of minimum size
    University of Memphis, Memphis, TN 38152, United States
    不详
    不详
    不详
    [J]. Discrete Math, 1600, 19 (5870-5876):
  • [29] ON A POSSIBLE WAY OF T(C)-ENHANCEMENT IN OXIDE SUPERCONDUCTORS
    KROTOV, YA
    SUSLOV, IM
    [J]. ZHURNAL EKSPERIMENTALNOI I TEORETICHESKOI FIZIKI, 1993, 103 (04): : 1394 - 1403
  • [30] A Divide-and-Conquer Approach to the Minimum k -Way Cut Problem
    [J]. Algorithmica, 2002, 32 : 262 - 276