On (Kq, k) vertex stable graphs with minimum size

被引:11
|
作者
Fouquet, J. -L. [1 ]
Thuillier, H. [1 ]
Vanherpe, J. -M. [1 ]
Wojda, A. P. [2 ]
机构
[1] Univ Orleans, Fac Sci, LIFO, F-45067 Orleans 2, France
[2] AGH Univ Sci & Technol, Zaklad Matemat Dyskretnej, Wydzial Matemat Stosowanej, PL-30059 Krakow, Poland
关键词
Stable graphs;
D O I
10.1016/j.disc.2011.04.017
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A graph G is a (K-q, k) vertex stable graph if it contains a K-q after deleting any subset of k vertices. We give a characterization of (K-q, k) vertex stable graphs with minimum size for q = 3, 4, 5. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:2109 / 2118
页数:10
相关论文
共 50 条
  • [1] ON MINIMUM (Kq, k) STABLE GRAPHS
    Fouquet, J. L.
    Thuillier, H.
    Vanherpe, J. M.
    [J]. DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2013, 33 (01) : 101 - 115
  • [2] On (Kq; k)-Stable Graphs
    Zak, Andrzej
    [J]. JOURNAL OF GRAPH THEORY, 2013, 74 (02) : 216 - 221
  • [3] On (Kq, k) stable graphs with small k
    Fouquet, Jean-Luc
    Thuillier, Henri
    Vanherpe, Jean-Marie
    Wojda, Adam Pawel
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2012, 19 (02):
  • [4] A generalization of an independent set with application to (Kq; k)-stable graphs
    Zak, Andrzej
    [J]. DISCRETE APPLIED MATHEMATICS, 2014, 162 : 421 - 427
  • [5] THE MINIMUM SIZE OF GRAPHS HAMILTONIAN-CONNECTED FROM A VERTEX
    KNICKERBOCKER, CJ
    LOCK, PF
    SHEARD, M
    [J]. DISCRETE MATHEMATICS, 1989, 76 (03) : 277 - 278
  • [6] A lower bound on the size of (H; 1)-vertex stable graphs
    Cichacz, Sylwia
    Goerlich, Agnieszka
    Nikodem, Mateusz
    Zak, Andrzej
    [J]. DISCRETE MATHEMATICS, 2012, 312 (20) : 3026 - 3029
  • [7] K-vertex-connectivity minimum augmentation for undirected unweighted graphs
    Cao, QG
    Wu, X
    Sun, YG
    [J]. PROGRESS IN NATURAL SCIENCE, 2003, 13 (06): : 434 - 445
  • [8] Minimum k-Path Vertex Cover in Cartesian Product Graphs
    Huiling YIN
    Binbin HAO
    Xiaoyan SU
    Jingrong CHEN
    [J]. Journal of Mathematical Research with Applications, 2021, 41 (04) : 340 - 348
  • [10] VERTEX PARTITIONS OF GRAPHS INTO K-STABLE AND K-COMPLETE SUBGRAPHS
    TUZA, Z
    [J]. ARS COMBINATORIA, 1989, 27 : 61 - 62