A generalization of an independent set with application to (Kq; k)-stable graphs

被引:4
|
作者
Zak, Andrzej [1 ]
机构
[1] AGH Univ Sci & Technol, PL-30059 Krakow, Poland
关键词
Independent set; Independence number; Clique;
D O I
10.1016/j.dam.2013.08.036
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a natural generalization of an independent set of a graph and give a sharp lower bound on its size. The bound generalizes the widely known Caro and Wei result on the independence number of a graph. We use this result in the following problem. Given non-negative real numbers alpha, beta the cost c(G) of a graph G is defined by c(G) = alpha vertical bar V(G)vertical bar + beta vertical bar E(G)vertical bar. We estimate the minimum cost of a (K-q; k)-vertex stable graph, i.e. a graph which contains a clique K-q after removing any k of its vertices. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:421 / 427
页数:7
相关论文
共 50 条
  • [1] A generalization of an independent set with application to (Kq; K) -stable graphs
    Zak, Andrzej
    [J]. Discrete Applied Mathematics, 2014, 162 : 421 - 427
  • [2] On (Kq; k)-Stable Graphs
    Zak, Andrzej
    [J]. JOURNAL OF GRAPH THEORY, 2013, 74 (02) : 216 - 221
  • [3] On (Kq, k) stable graphs with small k
    Fouquet, Jean-Luc
    Thuillier, Henri
    Vanherpe, Jean-Marie
    Wojda, Adam Pawel
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2012, 19 (02):
  • [4] ON MINIMUM (Kq, k) STABLE GRAPHS
    Fouquet, J. L.
    Thuillier, H.
    Vanherpe, J. M.
    [J]. DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2013, 33 (01) : 101 - 115
  • [5] On (Kq, k) vertex stable graphs with minimum size
    Fouquet, J. -L.
    Thuillier, H.
    Vanherpe, J. -M.
    Wojda, A. P.
    [J]. DISCRETE MATHEMATICS, 2012, 312 (14) : 2109 - 2118
  • [6] A 9k kernel for nonseparating independent set in planar graphs
    Kowalik, Lukasz
    Mucha, Marcin
    [J]. THEORETICAL COMPUTER SCIENCE, 2014, 516 : 86 - 95
  • [7] Maximum weight k-independent set problem on permutation graphs
    Saha, A
    Pal, M
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2003, 80 (12) : 1477 - 1487
  • [8] A 9k Kernel for Nonseparating Independent Set in Planar Graphs
    Kowalik, Lukasz
    Mucha, Marcin
    [J]. GRAPH-THEORETIC CONCEPTS IN COMPUTER SCIENCE, 2012, 7551 : 160 - 171
  • [9] ON STABLE SET POLYHEDRA FOR K1,3 FREE GRAPHS
    GILES, R
    TROTTER, LE
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 1981, 31 (03) : 313 - 326
  • [10] The stable stable set polytope of icosahedral graphs
    Galluccio, Anna
    Gentile, Claudio
    [J]. DISCRETE MATHEMATICS, 2016, 339 (02) : 614 - 625