A generalization of an independent set with application to (Kq; K) -stable graphs

被引:0
|
作者
Zak, Andrzej [1 ]
机构
[1] AGH University of Science and Technology, Al. Mickiewicza 30, Kraków,30-059, Poland
关键词
All Open Access; Bronze;
D O I
暂无
中图分类号
学科分类号
摘要
14
引用
收藏
页码:421 / 427
相关论文
共 50 条
  • [1] A generalization of an independent set with application to (Kq; k)-stable graphs
    Zak, Andrzej
    [J]. DISCRETE APPLIED MATHEMATICS, 2014, 162 : 421 - 427
  • [2] On (Kq; k)-Stable Graphs
    Zak, Andrzej
    [J]. JOURNAL OF GRAPH THEORY, 2013, 74 (02) : 216 - 221
  • [3] On (Kq, k) stable graphs with small k
    Fouquet, Jean-Luc
    Thuillier, Henri
    Vanherpe, Jean-Marie
    Wojda, Adam Pawel
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2012, 19 (02):
  • [4] ON MINIMUM (Kq, k) STABLE GRAPHS
    Fouquet, J. L.
    Thuillier, H.
    Vanherpe, J. M.
    [J]. DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2013, 33 (01) : 101 - 115
  • [5] On (Kq, k) vertex stable graphs with minimum size
    Fouquet, J. -L.
    Thuillier, H.
    Vanherpe, J. -M.
    Wojda, A. P.
    [J]. DISCRETE MATHEMATICS, 2012, 312 (14) : 2109 - 2118
  • [6] A 9k kernel for nonseparating independent set in planar graphs
    Kowalik, Lukasz
    Mucha, Marcin
    [J]. THEORETICAL COMPUTER SCIENCE, 2014, 516 : 86 - 95
  • [7] Maximum weight k-independent set problem on permutation graphs
    Saha, A
    Pal, M
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2003, 80 (12) : 1477 - 1487
  • [8] A 9k Kernel for Nonseparating Independent Set in Planar Graphs
    Kowalik, Lukasz
    Mucha, Marcin
    [J]. GRAPH-THEORETIC CONCEPTS IN COMPUTER SCIENCE, 2012, 7551 : 160 - 171
  • [9] ON STABLE SET POLYHEDRA FOR K1,3 FREE GRAPHS
    GILES, R
    TROTTER, LE
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 1981, 31 (03) : 313 - 326
  • [10] The stable stable set polytope of icosahedral graphs
    Galluccio, Anna
    Gentile, Claudio
    [J]. DISCRETE MATHEMATICS, 2016, 339 (02) : 614 - 625