On incremental and robust subspace learning

被引:169
|
作者
Li, YM [1 ]
机构
[1] Brunel Univ, Dept Informat Syst & Comp, Uxbridge UB8 3PH, Middx, England
关键词
principal component analysis; incremental PCA; robust PCA; background modelling; Mmulti-view face modelling;
D O I
10.1016/j.patcog.2003.11.010
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Principal Component Analysis (PCA) has been of great interest in computer vision and pattern recognition. In particular, incrementally learning a PCA model, which is computationally efficient for large-scale problems as well as adaptable to reflect the variable state of a dynamic system, is an attractive research topic with numerous applications such as adaptive background modelling and active object recognition. In addition, the conventional PCA, in the sense of least mean squared error minimisation, is susceptible to outlying measurements. To address these two important issues, we present a novel algorithm of incremental PCA, and then extend it to robust PCA. Compared with the previous studies on robust PCA, our algorithm is computationally more efficient. We demonstrate the performance of these algorithms with experimental results on dynamic background modelling and multi-view face modelling. (C) 2004 Pattern Recognition Society. Published by Elsevier Ltd, All rights reserved.
引用
收藏
页码:1509 / 1518
页数:10
相关论文
共 50 条
  • [41] Online nonparametric discriminant analysis for incremental subspace learning and recognition
    Raducanu, B.
    Vitria, J.
    PATTERN ANALYSIS AND APPLICATIONS, 2008, 11 (3-4) : 259 - 268
  • [42] Vehicle Counting in Video Sequences: An Incremental Subspace Learning Approach
    Rosas-Arias, Leonel
    Portillo-Portillo, Jose
    Hernandez-Suarez, Aldo
    Olivares-Mercado, Jesus
    Sanchez-Perez, Gabriel
    Toscano-Medina, Karina
    Perez-Meana, Hector
    Sandoval Orozco, Ana Lucila
    Garcia Villalba, Luis Javier
    SENSORS, 2019, 19 (13)
  • [43] Dynamic Task Subspace Ensemble for Class-Incremental Learning
    Zhang, Weile
    He, Yuanjian
    Cong, Yulai
    ARTIFICIAL INTELLIGENCE, CICAI 2023, PT II, 2024, 14474 : 322 - 334
  • [44] Online nonparametric discriminant analysis for incremental subspace learning and recognition
    B. Raducanu
    J. Vitrià
    Pattern Analysis and Applications, 2008, 11 : 259 - 268
  • [45] Robust metric learning based on subspace learning with lp - norm
    Wang, Yidan
    Yuan, Chao
    Yang, Liming
    SIGNAL PROCESSING, 2022, 192
  • [46] Probabilistic visual tracking via robust template matching and incremental subspace update
    Mei, Xue
    Zhou, Shaohua Kevin
    Porikli, Fatih
    2007 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, VOLS 1-5, 2007, : 1818 - +
  • [47] Constructing the L2-Graph for Robust Subspace Learning and Subspace Clustering
    Peng, Xi
    Yu, Zhiding
    Yi, Zhang
    Tang, Huajin
    IEEE TRANSACTIONS ON CYBERNETICS, 2017, 47 (04) : 1053 - 1066
  • [48] Robust and fast subspace representation learning for multi-view subspace clustering
    Yu, Tailong
    Xu, Yesong
    Yan, Nan
    Li, Mengyang
    Applied Soft Computing, 2025, 175
  • [49] Sparse robust subspace learning via boolean weight
    Wang, Sisi
    Nie, Feiping
    Wang, Zheng
    Wang, Rong
    Li, Xuelong
    INFORMATION FUSION, 2023, 96 : 224 - 236
  • [50] Robust orthogonal matrix factorization for efficient subspace learning
    Kim, Eunwoo
    Oh, Songhwai
    NEUROCOMPUTING, 2015, 167 : 218 - 229