Probabilistic visual tracking via robust template matching and incremental subspace update

被引:0
|
作者
Mei, Xue [1 ]
Zhou, Shaohua Kevin [2 ]
Porikli, Fatih [3 ]
机构
[1] Univ Maryland, College Pk, MD 20742 USA
[2] Siemens Corp Res, Princeton, NJ 08540 USA
[3] Mitsubishi Elect Res Lab, Cambridge, MA 02139 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we present a probabilistic algorithm for visual tracking that incorporates robust template matching and incremental subspace update. There are two template matching methods used in the tracker: one is robust to small perturbation and the other to background clutter. Each method yields a probability of matching. Further, the templates are modeled using mixed probabilities and updated once the templates in the library cannot capture the variation of object appearance. We also model the tracking history using a nonlinear subspace that is described by probabilistic kernel principal components analysis, which provides a third probability. The most-recent tracking result is added to the nonlinear subspace incrementally. This update is performed efficiently by augmenting the kernel Gram matrix with one row and one column. The product of the three probabilities is defined as the observation likelihood used in a particle filter to derive the tracking result. Experimental results demonstrate the efficiency and effectiveness of the proposed algorithm.
引用
收藏
页码:1818 / +
页数:2
相关论文
共 50 条
  • [1] Adaptive probabilistic visual tracking with incremental subspace update
    Ross, D
    Lim, J
    Yang, MH
    [J]. COMPUTER VISION - ECCV 2004, PT 2, 2004, 3022 : 470 - 482
  • [2] Robust Visual Tracking via Incremental Subspace Learning and Local Sparse Representation
    Yang, Guoliang
    Hu, Zhengwei
    Tang, Jun
    [J]. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2018, 43 (02) : 627 - 636
  • [3] Robust Visual Tracking via Incremental Subspace Learning and Local Sparse Representation
    Guoliang Yang
    Zhengwei Hu
    Jun Tang
    [J]. Arabian Journal for Science and Engineering, 2018, 43 : 627 - 636
  • [4] Robust visual tracking based on incremental tensor subspace learning
    Li, Xi
    Hu, Weiming
    Zhang, Zhongfei
    Zhang, Xiaoqin
    Luo, Guan
    [J]. 2007 IEEE 11TH INTERNATIONAL CONFERENCE ON COMPUTER VISION, VOLS 1-6, 2007, : 960 - +
  • [5] Robust Visual Tracking with Incremental Subspace Learning Sparse Model
    Wang, Hongqing
    Xu, Tingfa
    [J]. COMMUNICATIONS, SIGNAL PROCESSING, AND SYSTEMS, 2019, 463 : 2721 - 2728
  • [6] Robust Visual Tracking via Basis Matching
    Zhang, Shengping
    Lan, Xiangyuan
    Qi, Yuankai
    Yuen, Pong C.
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2017, 27 (03) : 421 - 430
  • [7] Robust Visual Tracking using Incremental Appearance Descriptor Update
    Ge, Yinghui
    Yu, Jianjun
    [J]. 2008 IEEE INTERNATIONAL CONFERENCE ON AUTOMATION AND LOGISTICS, VOLS 1-6, 2008, : 316 - +
  • [8] Hierarchical Template Matching for Robust Visual Tracking with Severe Occlusions
    Lizuo Jin
    Tirui Wu
    Feng Liu
    Gang Zeng
    [J]. ZTE Communications, 2012, 10 (04) : 54 - 59
  • [9] FUSION OF TEMPLATE MATCHING AND FOREGROUND DETECTION FOR ROBUST VISUAL TRACKING
    Dai, Kaiheng
    Wang, Yuehuan
    Yan, Xiaoyun
    Huo, Yang
    [J]. 2018 25TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2018, : 2720 - 2724
  • [10] ROBUST OBJECT TRACKING VIA INCREMENTAL SUBSPACE DYNAMIC SPARSE MODEL
    Ji, Zhangjian
    Wang, Weiqiang
    Xu, Ning
    [J]. 2014 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2014,