Probabilistic visual tracking via robust template matching and incremental subspace update

被引:0
|
作者
Mei, Xue [1 ]
Zhou, Shaohua Kevin [2 ]
Porikli, Fatih [3 ]
机构
[1] Univ Maryland, College Pk, MD 20742 USA
[2] Siemens Corp Res, Princeton, NJ 08540 USA
[3] Mitsubishi Elect Res Lab, Cambridge, MA 02139 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we present a probabilistic algorithm for visual tracking that incorporates robust template matching and incremental subspace update. There are two template matching methods used in the tracker: one is robust to small perturbation and the other to background clutter. Each method yields a probability of matching. Further, the templates are modeled using mixed probabilities and updated once the templates in the library cannot capture the variation of object appearance. We also model the tracking history using a nonlinear subspace that is described by probabilistic kernel principal components analysis, which provides a third probability. The most-recent tracking result is added to the nonlinear subspace incrementally. This update is performed efficiently by augmenting the kernel Gram matrix with one row and one column. The product of the three probabilities is defined as the observation likelihood used in a particle filter to derive the tracking result. Experimental results demonstrate the efficiency and effectiveness of the proposed algorithm.
引用
收藏
页码:1818 / +
页数:2
相关论文
共 50 条
  • [41] Robust structural identification via polyhedral template matching
    Larsen, Peter Mahler
    Schmidt, Soren
    Schiotz, Jakob
    [J]. MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 2016, 24 (05)
  • [42] Robust Template Matching via Pruning Deep Feature
    Wang, F.
    Xiong, J. P.
    Yin, J.
    Zhang, X. M.
    [J]. 2018 2ND INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE APPLICATIONS AND TECHNOLOGIES (AIAAT 2018), 2018, 435
  • [43] Visual Tracking via Subspace Learning: A Discriminative Approach
    Yao Sui
    Yafei Tang
    Li Zhang
    Guanghui Wang
    [J]. International Journal of Computer Vision, 2018, 126 : 515 - 536
  • [44] Kernel Subspace Integral Image Based Probabilistic Visual Object Tracking
    Majeed, Iftikhar
    Arif, Omar
    [J]. 2015 INTERNATIONAL CONFERENCE ON DIGITAL IMAGE COMPUTING: TECHNIQUES AND APPLICATIONS (DICTA), 2015, : 449 - 455
  • [45] Visual Tracking via Subspace Learning: A Discriminative Approach
    Sui, Yao
    Tang, Yafei
    Zhang, Li
    Wang, Guanghui
    [J]. INTERNATIONAL JOURNAL OF COMPUTER VISION, 2018, 126 (05) : 515 - 536
  • [46] Dynamic Learning Rate of Template Update for Visual Target Tracking
    Li, Da
    Li, Song
    Wei, Qin
    Chai, Haoxiang
    Han, Tao
    [J]. MATHEMATICS, 2023, 11 (09)
  • [47] Effective template update mechanism in visual tracking with background clutter
    Liu, Shuai
    Liu, Dongye
    Muhammad, Khan
    Ding, Weiping
    [J]. NEUROCOMPUTING, 2021, 458 : 615 - 625
  • [48] DOA TRACKING VIA SIGNAL-SUBSPACE PROJECTOR UPDATE
    Zhuang, Jie
    Tan, Tianhan
    Chen, Daolin
    Kang, Jiancheng
    [J]. 2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 4905 - 4909
  • [49] Visual tracking via probabilistic collaborative representation
    Wang, Haijun
    Zhang, Shengyan
    Du, Yujie
    Ge, Hongjuan
    Hu, Bo
    [J]. JOURNAL OF ELECTRONIC IMAGING, 2017, 26 (01)
  • [50] Visual Tracking via Probabilistic Hypergraph Ranking
    Lu, Ruitao
    Xu, Wanying
    Zheng, Yongbin
    Huang, Xinsheng
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2017, 27 (04) : 866 - 879