From non-Hermitian oscillator-like operators to Freud polynomials and some consequences

被引:0
|
作者
Beckers, J [1 ]
Debergh, N
机构
[1] Univ Liege, Inst Phys B5, B-4000 Liege 1, Belgium
[2] Inst Interuniv Sci Nucl, Brussels, Belgium
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Non-Hermitian quantum Hamiltonians dealing with oscillator-like interactions are discussed when realized in terms of creation and annihilation operators that are no longer adjoint to each other. Specific differential realizations are exploited and lead to real spectra and typical eigen-functions including (unexpected) Freud orthogonal polynomials. Hermiticity is finally revisited with respect to new scalar products of specific Hilbert spaces.
引用
收藏
页码:499 / 506
页数:8
相关论文
共 50 条
  • [1] Non-Hermitian oscillator-like Hamiltonians and λ-coherent states revisited
    Beckers, J
    Debergh, N
    Cariñena, JF
    Marmo, G
    [J]. MODERN PHYSICS LETTERS A, 2001, 16 (02) : 91 - 98
  • [2] Multiple Meixner polynomials and non-Hermitian oscillator Hamiltonians
    Ndayiragije, F.
    Van Assche, W.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (50)
  • [3] Non-Hermitian oscillator Hamiltonians and multiple Charlier polynomials
    Miki, Hiroshi
    Vinet, Luc
    Zhedanov, Alexei
    [J]. PHYSICS LETTERS A, 2011, 376 (02) : 65 - 69
  • [4] Non-Hermitian Orthogonal Polynomials on a Trefoil
    Ahmad B. Barhoumi
    Maxim L. Yattselev
    [J]. Constructive Approximation, 2024, 59 : 271 - 331
  • [5] Non-Hermitian Orthogonal Polynomials on a Trefoil
    Barhoumi, Ahmad B.
    Yattselev, Maxim L.
    [J]. CONSTRUCTIVE APPROXIMATION, 2024, 59 (02) : 271 - 331
  • [6] Choice of a metric for the non-Hermitian oscillator
    Musumbu, D. P.
    Geyer, H. B.
    Heiss, W. D.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (02) : F75 - F80
  • [7] ENERGY INDEPENDENT HERMITIAN AND NON-HERMITIAN EFFECTIVE OPERATORS
    NAVRATIL, P
    GEYER, HB
    KUO, TTS
    [J]. PHYSICS LETTERS B, 1993, 315 (1-2) : 1 - 5
  • [8] Uncertainty relation for non-Hermitian operators
    Bagarello, F.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2023, 56 (42)
  • [9] Detecting entanglement with non-Hermitian operators
    Hillery, Mark
    Ho Trung Dung
    Niset, Julien
    [J]. PHYSICAL REVIEW A, 2009, 80 (05):
  • [10] The physics of non-Hermitian operators - Preface
    Geyer, Hendrik
    Heiss, Dieter
    Znojil, Miloslav
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (32):