Determinantal point processes in the plane from products of random matrices

被引:28
|
作者
Adhikari, Kartick [1 ]
Reddy, Nanda Kishore [1 ]
Reddy, Tulasi Ram [1 ]
Saha, Koushik [2 ]
机构
[1] Indian Inst Sci, Dept Math, Bangalore 560012, Karnataka, India
[2] Indian Inst Technol, Dept Math, Bombay 400076, Maharashtra, India
关键词
Determinantal point process; Eigenvalues; Empirical spectral distribution; Limiting spectral distribution; Haar measure; QR decomposition; Random matrix; RQ decomposition; Generalized Schur decomposition; Unitary matrix; Wedge product;
D O I
10.1214/14-AIHP632
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We show that the density of eigenvalues for three classes of random matrix ensembles is determinantal. First we derive the density of eigenvalues of product of k independent n x n matrices with i.i.d. complex Gaussian entries with a few of matrices being inverted. In second example we calculate the same for (compatible) product of rectangular matrices with i.i.d. Gaussian entries and in last example we calculate for product of independent truncated unitary random matrices. We derive exact expressions for limiting expected empirical spectral distributions of above mentioned ensembles.
引用
收藏
页码:16 / 46
页数:31
相关论文
共 50 条
  • [31] Conditional Measures of Determinantal Point Processes
    Bufetov, A. I.
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 2020, 54 (01) : 7 - 20
  • [32] Difference operators and determinantal point processes
    Grigori Olshanski
    Functional Analysis and Its Applications, 2008, 42
  • [33] Determinantal Point Processes for Machine Learning
    Kulesza, Alex
    Taskar, Ben
    FOUNDATIONS AND TRENDS IN MACHINE LEARNING, 2012, 5 (2-3): : 123 - 286
  • [34] Tensorized Determinantal Point Processes for Recommendation
    Warlop, Romain
    Mary, Jeremie
    Gartrell, Mike
    KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2019, : 1605 - 1615
  • [35] INTRODUCTION TO DETERMINANTAL POINT PROCESSES FROM A QUANTUM PROBABILITY VIEWPOINT
    Gottlieb, Alex D.
    QUANTUM PROBABILITY AND INFINITE DIMENSIONAL ANALYSIS, PROCEEDINGS, 2007, 20 : 212 - 223
  • [36] Determinantal polynomial wave functions induced by random matrices
    Mays, Anthony
    Ponsaing, Anita K.
    Paganin, David M.
    PHYSICAL REVIEW A, 2018, 98 (06)
  • [37] Gaussian limit for determinantal random point fields
    Soshnikov, A
    ANNALS OF PROBABILITY, 2002, 30 (01): : 171 - 187
  • [38] Almost-Hermitian random matrices and bandlimited point processes
    Ameur, Yacin
    Byun, Sung-Soo
    ANALYSIS AND MATHEMATICAL PHYSICS, 2023, 13 (03)
  • [39] Almost-Hermitian random matrices and bandlimited point processes
    Yacin Ameur
    Sung-Soo Byun
    Analysis and Mathematical Physics, 2023, 13
  • [40] Linear systems and determinantal random point fields
    Blower, Gordon
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 355 (01) : 311 - 334