Determinantal point processes in the plane from products of random matrices

被引:28
|
作者
Adhikari, Kartick [1 ]
Reddy, Nanda Kishore [1 ]
Reddy, Tulasi Ram [1 ]
Saha, Koushik [2 ]
机构
[1] Indian Inst Sci, Dept Math, Bangalore 560012, Karnataka, India
[2] Indian Inst Technol, Dept Math, Bombay 400076, Maharashtra, India
关键词
Determinantal point process; Eigenvalues; Empirical spectral distribution; Limiting spectral distribution; Haar measure; QR decomposition; Random matrix; RQ decomposition; Generalized Schur decomposition; Unitary matrix; Wedge product;
D O I
10.1214/14-AIHP632
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We show that the density of eigenvalues for three classes of random matrix ensembles is determinantal. First we derive the density of eigenvalues of product of k independent n x n matrices with i.i.d. complex Gaussian entries with a few of matrices being inverted. In second example we calculate the same for (compatible) product of rectangular matrices with i.i.d. Gaussian entries and in last example we calculate for product of independent truncated unitary random matrices. We derive exact expressions for limiting expected empirical spectral distributions of above mentioned ensembles.
引用
收藏
页码:16 / 46
页数:31
相关论文
共 50 条
  • [21] Determinantal identity for multilevel ensembles and finite determinantal point processes
    Harnad, J.
    Orlov, A. Yu.
    ANALYSIS AND MATHEMATICAL PHYSICS, 2012, 2 (02) : 105 - 121
  • [22] Quantifying repulsiveness of determinantal point processes
    Biscio, Christophe Ange Napoleon
    Lavancier, Frederic
    BERNOULLI, 2016, 22 (04) : 2001 - 2028
  • [23] Difference operators and determinantal point processes
    Olshanski, Grigori
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 2008, 42 (04) : 317 - 329
  • [24] Determinantal point processes in the flat limit
    Barthelme, Simon
    Tremblay, Nicolas
    Usevich, Konstantin
    Amblard, Pierre-Olivier
    BERNOULLI, 2023, 29 (02) : 957 - 983
  • [25] Learning Nonsymmetric Determinantal Point Processes
    Gartrell, Mike
    Brunel, Victor-Emmanuel
    Dohmatob, Elvis
    Krichene, Syrine
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [26] On simulation of continuous determinantal point processes
    Lavancier, Frederic
    Rubak, Ege
    STATISTICS AND COMPUTING, 2023, 33 (05)
  • [27] MONTE CARLO WITH DETERMINANTAL POINT PROCESSES
    Bardenet, Remi
    Hardy, Adrien
    ANNALS OF APPLIED PROBABILITY, 2020, 30 (01): : 368 - 417
  • [28] Conditional Measures of Determinantal Point Processes
    A. I. Bufetov
    Functional Analysis and Its Applications, 2020, 54 : 7 - 20
  • [29] On simulation of continuous determinantal point processes
    Frédéric Lavancier
    Ege Rubak
    Statistics and Computing, 2023, 33
  • [30] Determinantal Point Processes for Image Processing
    Launay, Claire
    Desolneux, Agnes
    Galerne, Bruno
    SIAM JOURNAL ON IMAGING SCIENCES, 2021, 14 (01): : 304 - 348