Determinantal point processes in the plane from products of random matrices

被引:28
|
作者
Adhikari, Kartick [1 ]
Reddy, Nanda Kishore [1 ]
Reddy, Tulasi Ram [1 ]
Saha, Koushik [2 ]
机构
[1] Indian Inst Sci, Dept Math, Bangalore 560012, Karnataka, India
[2] Indian Inst Technol, Dept Math, Bombay 400076, Maharashtra, India
关键词
Determinantal point process; Eigenvalues; Empirical spectral distribution; Limiting spectral distribution; Haar measure; QR decomposition; Random matrix; RQ decomposition; Generalized Schur decomposition; Unitary matrix; Wedge product;
D O I
10.1214/14-AIHP632
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We show that the density of eigenvalues for three classes of random matrix ensembles is determinantal. First we derive the density of eigenvalues of product of k independent n x n matrices with i.i.d. complex Gaussian entries with a few of matrices being inverted. In second example we calculate the same for (compatible) product of rectangular matrices with i.i.d. Gaussian entries and in last example we calculate for product of independent truncated unitary random matrices. We derive exact expressions for limiting expected empirical spectral distributions of above mentioned ensembles.
引用
收藏
页码:16 / 46
页数:31
相关论文
共 50 条
  • [1] RANDOM STRICT PARTITIONS AND DETERMINANTAL POINT PROCESSES
    Petrov, Leonid
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2010, 15 : 162 - 175
  • [2] STATISTICS OF EXTREME SPACINGS IN DETERMINANTAL RANDOM POINT PROCESSES
    Soshnikov, Alexander
    MOSCOW MATHEMATICAL JOURNAL, 2005, 5 (03) : 705 - 719
  • [3] Rigidity Hierarchy in Random Point Fields: Random Polynomials and Determinantal Processes
    Subhroshekhar Ghosh
    Manjunath Krishnapur
    Communications in Mathematical Physics, 2021, 388 : 1205 - 1234
  • [4] Rigidity Hierarchy in Random Point Fields: Random Polynomials and Determinantal Processes
    Ghosh, Subhroshekhar
    Krishnapur, Manjunath
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2021, 388 (03) : 1205 - 1234
  • [5] Hole probabilities for β-ensembles and determinantal point processes in the complex plane
    Adhikari, Kartick
    ELECTRONIC JOURNAL OF PROBABILITY, 2018, 23
  • [6] Determinantal random point fields
    Soshnikov, A
    RUSSIAN MATHEMATICAL SURVEYS, 2000, 55 (05) : 923 - 975
  • [7] Products of random matrices: a dynamical point of view
    Tien-Cuong Dinh
    Kaufmann, Lucas
    Wu, Hao
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2021, 17 (03) : 933 - 969
  • [8] Kronecker Determinantal Point Processes
    Mariet, Zelda
    Sra, Suvrit
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 29 (NIPS 2016), 2016, 29
  • [9] Projections of determinantal point processes
    Mazoyer, Adrien
    Coeurjolly, Jean-Francois
    Amblard, Pierre-Olivier
    SPATIAL STATISTICS, 2020, 38
  • [10] Dynamic Determinantal Point Processes
    Osogami, Takayuki
    Raymond, Rudy
    Goel, Akshay
    Shirai, Tomoyuki
    Maehara, Takanori
    THIRTY-SECOND AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTIETH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / EIGHTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2018, : 3868 - 3875