Dynamic Attention-based Visual Odometry

被引:14
|
作者
Kuo, Xin-Yu [1 ]
Liu, Chien [1 ]
Lin, Kai-Chen [1 ]
Lee, Chun-Yi [1 ]
机构
[1] Natl Tsing Hua Univ, Dept Comp Sci, Elsa Lab, Hsinchu, Taiwan
关键词
D O I
10.1109/CVPRW50498.2020.00026
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes a dynamic attention-based visual odometry framework (DAVO), a learning-based VO method, for estimating the ego-motion of a monocular camera. DAVO dynamically adjusts the attention weights on different semantic categories for different motion scenarios based on optical flow maps. These weighted semantic categories can then be used to generate attention maps that highlight the relative importance of different semantic regions in input frames for pose estimation. In order to examine the proposed DAVO, we perform a number of experiments on the KITTI Visual Odometry and SLAM benchmark suite to quantitatively and qualitatively inspect the impacts of the dynamically adjusted weights on the accuracy of the evaluated trajectories. Moreover, we design a set of ablation analyses to justify each of our design choices, and validate the effectiveness as well as the advantages of DAVO. Our experiments on the KITTI dataset shows that the proposed DAVO framework does provide satisfactory performance in ego-motion estimation, and is able deliver competitive performance when compared to the contemporary VO methods.
引用
收藏
页码:160 / 169
页数:10
相关论文
共 50 条
  • [1] Dynamic Attention-based Visual Odometry
    Kuo, Xin-Yu
    Liu, Chien
    Lin, Kai-Chen
    Luo, Evan
    Chen, Yu-Wen
    Lee, Chun-Yi
    [J]. 2020 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2020, : 5753 - 5760
  • [2] Attention-based Long-term Modeling for Deep Visual Odometry
    Xu, Sangni
    Xiong, Hao
    Wu, Qiuxia
    Wang, Zhiyong
    [J]. 2021 INTERNATIONAL CONFERENCE ON DIGITAL IMAGE COMPUTING: TECHNIQUES AND APPLICATIONS (DICTA 2021), 2021, : 598 - 605
  • [3] Motion Consistency Loss for Monocular Visual Odometry with Attention-Based Deep Learning
    Francani, Andre O.
    Maximo, Marcos R. O. A.
    [J]. 2023 LATIN AMERICAN ROBOTICS SYMPOSIUM, LARS, 2023 BRAZILIAN SYMPOSIUM ON ROBOTICS, SBR, AND 2023 WORKSHOP ON ROBOTICS IN EDUCATION, WRE, 2023, : 409 - 414
  • [4] Attention-Based Deep Odometry Estimation on Point Clouds
    Kapoor P.
    Nowruzi F.E.
    Kolhatkar D.
    Laganiere R.
    [J]. SN Computer Science, 3 (5)
  • [5] Dynamic attention-based explainable recommendation with textual and visual fusion
    Liu, Peng
    Zhang, Lemei
    Gulla, Jon Atle
    [J]. INFORMATION PROCESSING & MANAGEMENT, 2020, 57 (06)
  • [6] Visual Attention-based Watermarking
    Oakes, Matthew
    Bhowmik, Deepayan
    Abhayaratne, Charith
    [J]. 2011 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2011, : 2653 - 2656
  • [7] Attention-based visual processes
    Cavanagh, P
    [J]. CANADIAN PSYCHOLOGY-PSYCHOLOGIE CANADIENNE, 1996, 37 (01): : 59 - 59
  • [8] Attention-based visual processes
    Cavanagh, P
    [J]. INTERNATIONAL JOURNAL OF PSYCHOLOGY, 1996, 31 (3-4) : 3363 - 3363
  • [9] Attention-based visual routines: sprites
    Cavanagh, P
    Labianca, AT
    Thornton, IM
    [J]. COGNITION, 2001, 80 (1-2) : 47 - 60
  • [10] Attention-based Visual Question Generation
    Patil, Charulata
    Kulkarni, Anagha
    [J]. 2021 INTERNATIONAL CONFERENCE ON EMERGING SMART COMPUTING AND INFORMATICS (ESCI), 2021, : 82 - 86