Attention-based visual routines: sprites

被引:128
|
作者
Cavanagh, P
Labianca, AT
Thornton, IM
机构
[1] Harvard Univ, Dept Psychol, Vis Sci Lab, Cambridge, MA 02138 USA
[2] Nissan Res & Dev Inc, Cambridge Basic Res, Cambridge, MA 02142 USA
关键词
attention; tracking; motion; visual search;
D O I
10.1016/S0010-0277(00)00153-0
中图分类号
B84 [心理学];
学科分类号
04 ; 0402 ;
摘要
A central role of visual attention is to generate object descriptions that are not available from early vision. Simple examples are counting elements in a display or deciding whether a dot is inside or outside a closed contour (Ullman, Cognition 18 (1984) 97). We are interested in the high-level descriptions of dynamic patterns - the motions that characterize familiar objects undergoing stereotypical action - such as a pencil bouncing on a table top, a butterfly in Right, or a closing door. We examine whether the perception of these action patterns is mediated by attention as a high-level animation or 'sprite'. We have studied the discrimination of displays made up of simple, rigidly linked sets of points in motion: either pairs of points in orbiting motion or 11 points in biological motion mimicking human walking. We find that discrimination of even the simplest dynamic patterns demands attention. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:47 / 60
页数:14
相关论文
共 50 条
  • [1] Visual Attention-based Watermarking
    Oakes, Matthew
    Bhowmik, Deepayan
    Abhayaratne, Charith
    [J]. 2011 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2011, : 2653 - 2656
  • [2] Attention-based visual processes
    Cavanagh, P
    [J]. CANADIAN PSYCHOLOGY-PSYCHOLOGIE CANADIENNE, 1996, 37 (01): : 59 - 59
  • [3] Attention-based visual processes
    Cavanagh, P
    [J]. INTERNATIONAL JOURNAL OF PSYCHOLOGY, 1996, 31 (3-4) : 3363 - 3363
  • [4] Dynamic Attention-based Visual Odometry
    Kuo, Xin-Yu
    Liu, Chien
    Lin, Kai-Chen
    Luo, Evan
    Chen, Yu-Wen
    Lee, Chun-Yi
    [J]. 2020 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2020, : 5753 - 5760
  • [5] Dynamic Attention-based Visual Odometry
    Kuo, Xin-Yu
    Liu, Chien
    Lin, Kai-Chen
    Lee, Chun-Yi
    [J]. 2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW 2020), 2020, : 160 - 169
  • [6] Attention-based Visual Question Generation
    Patil, Charulata
    Kulkarni, Anagha
    [J]. 2021 INTERNATIONAL CONFERENCE ON EMERGING SMART COMPUTING AND INFORMATICS (ESCI), 2021, : 82 - 86
  • [7] Visual Attention-Based Image Watermarking
    Bhowmik, Deepayan
    Oakes, Matthew
    Abhayaratne, Charith
    [J]. IEEE ACCESS, 2016, 4 : 8002 - 8018
  • [8] Attention-based Deep Learning for Visual Servoing
    Wang, Bo
    Li, Yuan
    [J]. 2020 CHINESE AUTOMATION CONGRESS (CAC 2020), 2020, : 4388 - 4393
  • [9] Analog VLSI circuits for attention-based, visual tracking
    Horiuchi, TK
    Morris, TG
    Koch, C
    DeWeerth, SP
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 9: PROCEEDINGS OF THE 1996 CONFERENCE, 1997, 9 : 706 - 712
  • [10] Visual attention-based deepfake video forgery detection
    Shreyan Ganguly
    Sk Mohiuddin
    Samir Malakar
    Erik Cuevas
    Ram Sarkar
    [J]. Pattern Analysis and Applications, 2022, 25 : 981 - 992