Dynamic Attention-based Visual Odometry

被引:14
|
作者
Kuo, Xin-Yu [1 ]
Liu, Chien [1 ]
Lin, Kai-Chen [1 ]
Lee, Chun-Yi [1 ]
机构
[1] Natl Tsing Hua Univ, Dept Comp Sci, Elsa Lab, Hsinchu, Taiwan
关键词
D O I
10.1109/CVPRW50498.2020.00026
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes a dynamic attention-based visual odometry framework (DAVO), a learning-based VO method, for estimating the ego-motion of a monocular camera. DAVO dynamically adjusts the attention weights on different semantic categories for different motion scenarios based on optical flow maps. These weighted semantic categories can then be used to generate attention maps that highlight the relative importance of different semantic regions in input frames for pose estimation. In order to examine the proposed DAVO, we perform a number of experiments on the KITTI Visual Odometry and SLAM benchmark suite to quantitatively and qualitatively inspect the impacts of the dynamically adjusted weights on the accuracy of the evaluated trajectories. Moreover, we design a set of ablation analyses to justify each of our design choices, and validate the effectiveness as well as the advantages of DAVO. Our experiments on the KITTI dataset shows that the proposed DAVO framework does provide satisfactory performance in ego-motion estimation, and is able deliver competitive performance when compared to the contemporary VO methods.
引用
收藏
页码:160 / 169
页数:10
相关论文
共 50 条
  • [21] Visual attention-based deepfake video forgery detection
    Ganguly, Shreyan
    Mohiuddin, Sk
    Malakar, Samir
    Cuevas, Erik
    Sarkar, Ram
    PATTERN ANALYSIS AND APPLICATIONS, 2022, 25 (04) : 981 - 992
  • [22] A visual attention-based keyword extraction for document classification
    Xing Wu
    Zhikang Du
    Yike Guo
    Multimedia Tools and Applications, 2018, 77 : 25355 - 25367
  • [23] Visual attention-based deepfake video forgery detection
    Shreyan Ganguly
    Sk Mohiuddin
    Samir Malakar
    Erik Cuevas
    Ram Sarkar
    Pattern Analysis and Applications, 2022, 25 : 981 - 992
  • [24] Attention-based Integration of Visual Context in Place Representations
    Soyer, Cagatay
    COGNITIVE PROCESSING, 2021, 22 (SUPPL 1) : 36 - 36
  • [25] KeywordMap: Attention-based Visual Exploration for Keyword Analysis
    Tu, Yamei
    Xu, Jiayi
    Shen, Han-Wei
    2021 IEEE 14TH PACIFIC VISUALIZATION SYMPOSIUM (PACIFICVIS 2021), 2021, : 206 - 215
  • [26] Visual Attention-Based Object Detection in Cluttered Environments
    Machado, Eduardo
    Carrillo, Ivan
    Collado, Miguel
    Chen, Liming
    2019 IEEE SMARTWORLD, UBIQUITOUS INTELLIGENCE & COMPUTING, ADVANCED & TRUSTED COMPUTING, SCALABLE COMPUTING & COMMUNICATIONS, CLOUD & BIG DATA COMPUTING, INTERNET OF PEOPLE AND SMART CITY INNOVATION (SMARTWORLD/SCALCOM/UIC/ATC/CBDCOM/IOP/SCI 2019), 2019, : 133 - 139
  • [27] Attention-based active visual search for mobile robots
    Rasouli, Amir
    Lanillos, Pablo
    Cheng, Gordon
    Tsotsos, John K.
    AUTONOMOUS ROBOTS, 2020, 44 (02) : 131 - 146
  • [28] A Visual Attention-Based Model for Bengali Image Captioning
    Das B.
    Pal R.
    Majumder M.
    Phadikar S.
    Sekh A.A.
    SN Computer Science, 4 (2)
  • [29] Attention-based active visual search for mobile robots
    Amir Rasouli
    Pablo Lanillos
    Gordon Cheng
    John K. Tsotsos
    Autonomous Robots, 2020, 44 : 131 - 146
  • [30] A visual attention-based keyword extraction for document classification
    Wu, Xing
    Du, Zhikang
    Guo, Yike
    MULTIMEDIA TOOLS AND APPLICATIONS, 2018, 77 (19) : 25355 - 25367