Quantum Criticality in the Two-Dimensional Periodic Anderson Model

被引:24
|
作者
Schaefer, T. [1 ,2 ,3 ]
Katanin, A. A. [4 ]
Kitatani, M. [1 ]
Toschi, A. [1 ]
Held, K. [1 ]
机构
[1] TU Wien, Inst Solid State Phys, A-1040 Vienna, Austria
[2] Coll France, 11 Pl Marcelin Berthelot, F-75005 Paris, France
[3] Ecole Polytech, CNRS, CPHT, IP Paris, F-91128 Palaiseau, France
[4] Inst Met Phys, Kovalevskaya Str 18, Ekaterinburg 620990, Russia
基金
欧洲研究理事会; 奥地利科学基金会;
关键词
CRITICAL-POINTS; TEMPERATURE; BEHAVIOR; LATTICE;
D O I
10.1103/PhysRevLett.122.227201
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the phase diagram and quantum critical region of one of the fundamental models for electronic correlations: the periodic Anderson model. Employing the recently developed dynamical vertex approximation, we find a phase transition between a zero-temperature antiferromagnetic insulator and a Kondo insulator. In the quantum critical region, we determine a critical exponent gamma = 2 for the antiferromagnetic susceptibility. At higher temperatures, we have free spins with gamma =1 instead, whereas at lower temperatures, there is an even stronger increase and suppression of the susceptibility below and above the quantum critical point, respectively.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] One-dimensional scattering of two-dimensional fermions near quantum criticality
    Pimenov, Dimitri
    Kamenev, Alex
    Chubukov, Andrey, V
    PHYSICAL REVIEW B, 2021, 103 (21)
  • [22] The two-dimensional Anderson model of localization with random hopping
    Eilmes, A
    Romer, RA
    Schreiber, M
    EUROPEAN PHYSICAL JOURNAL B, 1998, 1 (01): : 29 - 38
  • [23] The two-dimensional Anderson model of localization with random hopping
    A. Eilmes
    R.A. Römer
    M. Schreiber
    The European Physical Journal B - Condensed Matter and Complex Systems, 1998, 1 : 29 - 38
  • [24] Anderson localization in a two-dimensional random gap model
    Hill, A.
    Ziegler, K.
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2014, 56 : 172 - 176
  • [25] Smoothed universal correlations in the two-dimensional Anderson model
    Uski, V
    Mehlig, B
    Römer, RA
    Schreiber, M
    PHYSICAL REVIEW B, 1999, 59 (06) : 4080 - 4090
  • [26] Evidence for deconfined quantum criticality in a two-dimensional Heisenberg model with four-spin interactions
    Sandvik, Anders W.
    PHYSICAL REVIEW LETTERS, 2007, 98 (22)
  • [27] Boundary criticality and multifractality at the two-dimensional spin quantum Hall transition
    Subramaniam, Arvind R.
    Gruzberg, Ilya A.
    Ludwig, Andreas W. W.
    PHYSICAL REVIEW B, 2008, 78 (24)
  • [28] Deconfined quantum criticality and conformal phase transition in two-dimensional antiferromagnets
    Nogueira, Flavio S.
    Sudbo, Asle
    EPL, 2013, 104 (05)
  • [29] Quantum criticality of magnetic catalysis in two-dimensional correlated Dirac fermions
    Tada, Yasuhiro
    PHYSICAL REVIEW RESEARCH, 2020, 2 (03):
  • [30] Boundary criticality of topological quantum phase transitions in two-dimensional systems
    Wu, Xiao-Chuan
    Xu, Yichen
    Geng, Hao
    Jian, Chao-Ming
    Xu, Cenke
    PHYSICAL REVIEW B, 2020, 101 (17)