The two-dimensional Anderson model of localization with random hopping

被引:0
|
作者
A. Eilmes
R.A. Römer
M. Schreiber
机构
[1] Department of Computational Methods in Chemistry,
[2] Jagiellonian University,undefined
[3] 30-060 Kraków,undefined
[4] Poland,undefined
[5] Institut für Physik,undefined
[6] Technische Universität Chemnitz,undefined
[7] 09107 Chemnitz,undefined
[8] Germany,undefined
关键词
PACS. 72.15.Rn Quantum localization - 71.30.+h Metal-insulator transitions and other electronic transitions;
D O I
暂无
中图分类号
学科分类号
摘要
We examine the localization properties of the 2D Anderson Hamiltonian with off-diagonal disorder. Investigating the behavior of the participation numbers of eigenstates as well as studying their multifractal properties, we find states in the center of the band which show critical behavior up to the system size \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} considered. This result is confirmed by an independent analysis of the localization lengths in quasi-1D strips with the help of the transfer-matrix method. Adding a very small additional onsite potential disorder, the critical states become localized.
引用
收藏
页码:29 / 38
页数:9
相关论文
共 50 条
  • [1] The two-dimensional Anderson model of localization with random hopping
    Eilmes, A
    Romer, RA
    Schreiber, M
    [J]. EUROPEAN PHYSICAL JOURNAL B, 1998, 1 (01): : 29 - 38
  • [2] Critical behavior in the two-dimensional Anderson model of localization with random hopping
    Eilmes, A
    Romer, RA
    Schreiber, M
    [J]. PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 1998, 205 (01): : 229 - 232
  • [3] Critical Behavior in the Two-Dimensional Anderson Model of Localization with Random Hopping
    [J]. Physica Status Solidi (B): Basic Research, 205 (01):
  • [4] Anderson localization for two-dimensional random hopping model with SU(2) symmetry
    Fukui, T
    [J]. NUCLEAR PHYSICS B, 2000, 575 (03) : 673 - 683
  • [5] Anderson localization in a two-dimensional random gap model
    Hill, A.
    Ziegler, K.
    [J]. PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2014, 56 : 172 - 176
  • [6] A note on Anderson localization for the random hopping model
    Klopp, F
    Nakamura, S
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2003, 44 (11) : 4975 - 4980
  • [7] Anderson Localization of Light in Two-dimensional Random Arrays of Semiconductor Nanocolumns
    Inose, Yuta
    Ema, Kazuhiro
    Sakai, Masaru
    Kikuchi, Akihiko
    Kishino, Katsumi
    Ohtsuki, Tomi
    [J]. PHYSICS OF SEMICONDUCTORS, 2013, 1566 : 548 - +
  • [8] ANDERSON LOCALIZATION FOR A TWO-DIMENSIONAL ROTOR
    DORON, E
    FISHMAN, S
    [J]. PHYSICAL REVIEW LETTERS, 1988, 60 (10) : 867 - 870
  • [9] TRANSPORT ANISOTROPY AND PERCOLATION IN THE TWO-DIMENSIONAL RANDOM-HOPPING MODEL
    KUNDU, K
    PARRIS, PE
    PHILLIPS, P
    [J]. PHYSICAL REVIEW B, 1987, 35 (07): : 3468 - 3477
  • [10] Anderson localization in two-dimensional disordered systems
    Unge, M
    Stafström, S
    [J]. SYNTHETIC METALS, 2003, 139 (02) : 239 - 244