Contribution of individual degrees of freedom to Lyapunov vectors in many-body systems

被引:6
|
作者
Miranda Filho, L. H. [1 ,2 ,3 ,4 ]
Amato, M. A. [4 ]
Elskens, Y. [1 ]
Rocha Filho, T. M. [3 ,4 ]
机构
[1] Aix Marseille Univ, CNRS, Phys Interact Ion & Mol, UMR 7345, Campus St Jerome,Case 322,Av Esc Normandie Niemen, FR-13397 Marseille 20, France
[2] Univ Fed Rural Pernambuco, Dept Fis, Rua Manoel Medeiros S-N, BR-52171900 Recife, PE, Brazil
[3] Univ Brasilia, Inst Fis, CP 04455, BR-70919970 Brasilia, DF, Brazil
[4] Univ Brasilia, Int Ctr Condensed Matter Phys, CP 04455, BR-70919970 Brasilia, DF, Brazil
关键词
Chaos; Lyapunov exponents; Hamiltonian mean field; Kinetic space; Molecular dynamics; INSTABILITY; FLUIDS;
D O I
10.1016/j.cnsns.2019.03.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We use the weight delta I, deduced from the estimation of Lyapunov vectors, in order to characterise regions in the kinetic (x, v) space with particles that most contribute to chaoticity. For the paradigmatic model, the cosine Hamiltonian mean field model, we show that this diagnostic highlights the vicinity of the separatrix, even when the latter hardly exists. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:236 / 247
页数:12
相关论文
共 50 条
  • [31] INSTABILITY OF DYNAMICAL SYSTEMS WITH MANY DEGREES OF FREEDOM
    ARNOLD, VI
    DOKLADY AKADEMII NAUK SSSR, 1964, 156 (01): : 9 - &
  • [32] Integrable Systems with Many Degrees of Freedom and with Dissipation
    M. V. Shamolin
    Moscow University Mechanics Bulletin, 2019, 74 : 137 - 146
  • [33] Integrable Systems with Many Degrees of Freedom and with Dissipation
    Shamolin, M. V.
    MOSCOW UNIVERSITY MECHANICS BULLETIN, 2019, 74 (06) : 137 - 146
  • [34] Applicability of Quantum Thermal Baths to Complex Many-Body Systems with Various Degrees of Anharmonicity
    Hernandez-Rojas, Javier
    Calvo, Florent
    Gonzalez Noya, Eva
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2015, 11 (03) : 861 - 870
  • [35] STABILITY OF MECHANICAL SYSTEMS WITH MANY DEGREES OF FREEDOM
    SIDOROV, IM
    KOROTAYE.IP
    ENGINEERING CYBERNETICS, 1965, (04): : 181 - &
  • [36] Control of oscillations in systems with many degrees of freedom
    Chernousko, FL
    IUTAM SYMPOSIUM ON RECENT DEVELOPMENTS IN NON-LINEAR OSCILLATIONS OF MECHANICAL SYSTEMS, 2000, 77 : 45 - 54
  • [37] Many-body Wigner quantum systems
    Palev, TD
    Stoilova, NI
    JOURNAL OF MATHEMATICAL PHYSICS, 1997, 38 (05) : 2506 - 2523
  • [38] On the spectral analysis of many-body systems
    Damak, Mondher
    Georgescu, Vladimir
    JOURNAL OF FUNCTIONAL ANALYSIS, 2010, 259 (03) : 618 - 689
  • [39] Hidden symmetries in many-body systems
    Kusnezov, D
    GROUP 22: PROCEEDINGS OF THE XII INTERNATIONAL COLLOQUIUM ON GROUP THEORETICAL METHODS IN PHYSICS, 1998, : 188 - 192
  • [40] Density fluctuations in many-body systems
    Truskett, TM
    Torquato, S
    Debenedetti, PG
    PHYSICAL REVIEW E, 1998, 58 (06): : 7369 - 7380