Contribution of individual degrees of freedom to Lyapunov vectors in many-body systems

被引:6
|
作者
Miranda Filho, L. H. [1 ,2 ,3 ,4 ]
Amato, M. A. [4 ]
Elskens, Y. [1 ]
Rocha Filho, T. M. [3 ,4 ]
机构
[1] Aix Marseille Univ, CNRS, Phys Interact Ion & Mol, UMR 7345, Campus St Jerome,Case 322,Av Esc Normandie Niemen, FR-13397 Marseille 20, France
[2] Univ Fed Rural Pernambuco, Dept Fis, Rua Manoel Medeiros S-N, BR-52171900 Recife, PE, Brazil
[3] Univ Brasilia, Inst Fis, CP 04455, BR-70919970 Brasilia, DF, Brazil
[4] Univ Brasilia, Int Ctr Condensed Matter Phys, CP 04455, BR-70919970 Brasilia, DF, Brazil
关键词
Chaos; Lyapunov exponents; Hamiltonian mean field; Kinetic space; Molecular dynamics; INSTABILITY; FLUIDS;
D O I
10.1016/j.cnsns.2019.03.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We use the weight delta I, deduced from the estimation of Lyapunov vectors, in order to characterise regions in the kinetic (x, v) space with particles that most contribute to chaoticity. For the paradigmatic model, the cosine Hamiltonian mean field model, we show that this diagnostic highlights the vicinity of the separatrix, even when the latter hardly exists. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:236 / 247
页数:12
相关论文
共 50 条
  • [11] Decoherence of many-body systems due to many-body interactions
    Carle, T.
    Briegel, H. J.
    Kraus, B.
    PHYSICAL REVIEW A, 2011, 84 (01):
  • [12] Many-body theory of dilute Bose-Einstein condensates with internal degrees of freedom
    Ueda, Masahito
    Physical Review A - Atomic, Molecular, and Optical Physics, 2001, 63 (01): : 013601 - 013601
  • [13] Many-body theory of dilute Bose-Einstein condensates with internal degrees of freedom
    Ueda, MA
    PHYSICAL REVIEW A, 2001, 63 (01):
  • [14] MESONIC AND ISOBAR DEGREES OF FREEDOM IN GROUND-STATE OF NUCLEAR MANY-BODY SYSTEM
    ANASTASIO, MR
    FAESSLER, A
    MUTHER, H
    HOLINDE, K
    MACHLEIDT, R
    PHYSICAL REVIEW C, 1978, 18 (05): : 2416 - 2429
  • [15] Lyapunov functional approach and collective dynamics of some interacting many-body systems
    Ha, Seung-Yeal
    PROCEEDINGS OF THE INTERNATIONAL CONGRESS OF MATHEMATICIANS (ICM 2014), VOL III, 2014, : 1123 - 1140
  • [16] LIBRATION IN SYSTEMS WITH MANY DEGREES OF FREEDOM
    BOLOTIN, SV
    KOZLOV, VV
    PMM JOURNAL OF APPLIED MATHEMATICS AND MECHANICS, 1978, 42 (02): : 256 - 261
  • [17] CONTRIBUTION TO PROBLEM OF ENTROPY INCREASE OF QUANTUM MECHANICAL MANY-BODY SYSTEMS
    HORVATH, JI
    ACTA PHYSICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1965, 18 (02): : 145 - &
  • [18] Atoms as many-body systems
    Amusia, M. Ya
    MANY-BODY CORRELATIONS FROM DILUTE TO DENSE NUCLEAR SYSTEMS (MBC 2011), 2011, 321
  • [19] Interacting many-body systems
    FLOW EQUATION APPROACH TO MANY-PARTICLE SYSTEMS, 2006, 217 : 63 - 135
  • [20] Mechanics of Many-Body Systems
    Iwai, Toshihiro
    GEOMETRY, MECHANICS,AND CONTROL IN ACTION FOR THE FALLING CAT, 2021, 2289 : 69 - 94