Contribution of individual degrees of freedom to Lyapunov vectors in many-body systems

被引:6
|
作者
Miranda Filho, L. H. [1 ,2 ,3 ,4 ]
Amato, M. A. [4 ]
Elskens, Y. [1 ]
Rocha Filho, T. M. [3 ,4 ]
机构
[1] Aix Marseille Univ, CNRS, Phys Interact Ion & Mol, UMR 7345, Campus St Jerome,Case 322,Av Esc Normandie Niemen, FR-13397 Marseille 20, France
[2] Univ Fed Rural Pernambuco, Dept Fis, Rua Manoel Medeiros S-N, BR-52171900 Recife, PE, Brazil
[3] Univ Brasilia, Inst Fis, CP 04455, BR-70919970 Brasilia, DF, Brazil
[4] Univ Brasilia, Int Ctr Condensed Matter Phys, CP 04455, BR-70919970 Brasilia, DF, Brazil
关键词
Chaos; Lyapunov exponents; Hamiltonian mean field; Kinetic space; Molecular dynamics; INSTABILITY; FLUIDS;
D O I
10.1016/j.cnsns.2019.03.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We use the weight delta I, deduced from the estimation of Lyapunov vectors, in order to characterise regions in the kinetic (x, v) space with particles that most contribute to chaoticity. For the paradigmatic model, the cosine Hamiltonian mean field model, we show that this diagnostic highlights the vicinity of the separatrix, even when the latter hardly exists. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:236 / 247
页数:12
相关论文
共 50 条
  • [1] Lyapunov instability of classical many-body systems
    Poschl, H. A.
    Hoover, Wm G.
    THIRD 21COE SYMPOSIUM: ASTROPHYSICS AS INTERDISCIPLINARY SCIENCE, 2006, 31 : 9 - 17
  • [2] Path integrals and degrees of freedom in many-body systems and relativistic field theories
    Palumbo, F
    PHYSICS OF ATOMIC NUCLEI, 2005, 68 (05) : 892 - 898
  • [3] Path integrals and degrees of freedom in many-body systems and relativistic field theories
    F. Palumbo
    Physics of Atomic Nuclei, 2005, 68 : 892 - 898
  • [4] Towards the proof of complete integrability of quantum elliptic many-body systems with spin degrees of freedom
    J. Dittrich
    V. I. Inozemtsev
    Regular and Chaotic Dynamics, 2009, 14 : 218 - 222
  • [5] Towards the proof of complete integrability of quantum elliptic many-body systems with spin degrees of freedom
    Dittrich, J.
    Inozemtsev, V. I.
    REGULAR & CHAOTIC DYNAMICS, 2009, 14 (02): : 218 - 222
  • [6] Ab initio stochastic optimization of conformational and many-body degrees of freedom
    McMillan, SA
    Haubein, NC
    Snurr, RQ
    Broadbelt, LJ
    JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES, 2003, 43 (06): : 1820 - 1828
  • [7] Fluctuations and the many-body Lyapunov exponent
    Barnett, DM
    Tajima, T
    PHYSICAL REVIEW E, 1996, 54 (06): : 6084 - 6092
  • [8] Spectral Lyapunov exponents in chaotic and localized many-body quantum systems
    Chan, Amos
    De Luca, Andrea
    Chalker, J. T.
    PHYSICAL REVIEW RESEARCH, 2021, 3 (02):
  • [9] CONTRIBUTION OF 2-BODY CORRELATIONS TO THE WAVEFUNCTION OF MANY-BODY SYSTEMS
    BALLOT, JL
    DELARIPELLE, MF
    NAVARRO, J
    PHYSICS LETTERS B, 1984, 143 (1-3) : 19 - 24
  • [10] Avalanches and many-body resonances in many-body localized systems
    Morningstar, Alan
    Colmenarez, Luis
    Khemani, Vedika
    Luitz, David J.
    Huse, David A.
    PHYSICAL REVIEW B, 2022, 105 (17)