Boundedness of multi-parameter Fourier multiplier operators on Triebel-Lizorkin and Besov-Lipschitz spaces

被引:15
|
作者
Chen, Lu [1 ]
Lu, Guozhen [2 ]
Luo, Xiang [1 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Lab Math & Complex Syst, Minist Educ, Beijing 100875, Peoples R China
[2] Wayne State Univ, Dept Math, Detroit, MI 48202 USA
基金
美国国家科学基金会;
关键词
Multi-parameter Fourier multiplier; Multi-parameter Triebel-Lizorkin spaces; Multi-parameter Besov-Lipschitz spaces; Strong maximal functions; Littlewood-Paley decomposition; CALDERON-ZYGMUND THEORY; SINGULAR-INTEGRALS; JOURNES CLASS; FLAG KERNELS;
D O I
10.1016/j.na.2015.12.016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The main purpose of this paper is three-fold. First, we prove that under the limited smoothness conditions, multi-parameter Fourier multiplier operators are bounded on multi-parameter Triebel-Lizorkin and Besov-Lipschitz spaces by the Littlewood-Paley decomposition and the strong maximal operator. Second, we offer a different and more direct method to deal with the boundedness instead of transforming Fourier multiplier operators into multi-parameter Calderon-Zygmund operators. Third, we also prove the boundedness of multi-parameter Fourier multiplier operators on weighted multi-parameter Triebel-Lizorkin and Besov-Lipschitz spaces when the Fourier multiplier is only assumed with limited smoothness. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:55 / 69
页数:15
相关论文
共 50 条