The residues of the resolvent on Damek-Ricci spaces

被引:11
|
作者
Miatello, RJ [1 ]
Will, CE [1 ]
机构
[1] Natl Univ Cordoba, Fac Matemat Astron & Fis, RA-5000 Cordoba, Argentina
关键词
D O I
10.1090/S0002-9939-99-05498-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We determine the poles and residues of the resolvent kernel of the Laplacian on a Damek-Ricci space S. We show that all poles are simple and the residues define convolution operators of finite rank. This generalizes a result of Guillope-Zworski for the real hyperbolic n-space. If S corresponds to a symmetric space of negative curvature G/K, the image of each residue is a g(c)-module with a specific highest weight. We compute the dimension by the Weyl dimension formula.
引用
收藏
页码:1221 / 1229
页数:9
相关论文
共 50 条