Optimal heat kernel bounds and asymptotics on Damek-Ricci spaces

被引:0
|
作者
Bruno, Tommaso [1 ]
Santagati, Federico [2 ]
机构
[1] Univ Genoa, Dipartimento Matemat, Via Dodecaneso 35, I-16146 Genoa, Italy
[2] Univ New South Wales, Sch Math & Stat, Sydney 2052, Australia
基金
澳大利亚研究理事会;
关键词
Damek-Ricci spaces; Heat kernel; Asymptotic estimates; SOLVABLE EXTENSIONS; RIESZ TRANSFORMS; LAPLACIAN;
D O I
10.1016/j.jat.2025.106144
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give optimal bounds for the radial, space and time derivatives of arbitrary order of the heat kernel of the Laplace-Beltrami operator on Damek-Ricci spaces. In the case of symmetric spaces of rank one, these complete and actually improve conjectured estimates by Anker and Ji. We also provide asymptotics at infinity of all the radial and time derivates of the kernel. Along the way, we provide sharp bounds for all the derivatives of the Riemannian distance and obtain analogous bounds for those of the heat kernel of the distinguished Laplacian. (c) 2025 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页数:37
相关论文
共 50 条