The residues of the resolvent on Damek-Ricci spaces

被引:11
|
作者
Miatello, RJ [1 ]
Will, CE [1 ]
机构
[1] Natl Univ Cordoba, Fac Matemat Astron & Fis, RA-5000 Cordoba, Argentina
关键词
D O I
10.1090/S0002-9939-99-05498-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We determine the poles and residues of the resolvent kernel of the Laplacian on a Damek-Ricci space S. We show that all poles are simple and the residues define convolution operators of finite rank. This generalizes a result of Guillope-Zworski for the real hyperbolic n-space. If S corresponds to a symmetric space of negative curvature G/K, the image of each residue is a g(c)-module with a specific highest weight. We compute the dimension by the Weyl dimension formula.
引用
收藏
页码:1221 / 1229
页数:9
相关论文
共 50 条
  • [1] Spectral multipliers on Damek-Ricci spaces
    Vallarino, Maria
    JOURNAL OF LIE THEORY, 2007, 17 (01) : 163 - 189
  • [2] The metric at infinity on Damek-Ricci spaces
    Camporesi, Roberto
    ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2020, 20 (03) : 925 - 949
  • [3] Einstein hypersurfaces of Damek-Ricci spaces
    Kim, Sinhwi
    Nikolayevsky, Yuri
    Park, JeongHyeong
    JOURNAL OF GEOMETRY AND PHYSICS, 2021, 167
  • [4] The wave equation on Damek-Ricci spaces
    Anker, Jean-Philippe
    Pierfelice, Vittoria
    Vallarino, Maria
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2015, 194 (03) : 731 - 758
  • [5] Polar actions on Damek-Ricci spaces
    Kollross, Andreas
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2021, 76
  • [6] Lipschitz Conditions in Damek-Ricci Spaces
    El Ouadih, Salah
    Daher, Radouan
    COMPTES RENDUS MATHEMATIQUE, 2021, 359 (06) : 675 - 685
  • [7] Schrodinger Equations on Damek-Ricci Spaces
    Anker, Jean-Philippe
    Pierfelice, Vittoria
    Vallarino, Maria
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2011, 36 (06) : 976 - 997
  • [8] Isoparametric hypersurfaces in Damek-Ricci spaces
    Carlos Diaz-Ramos, Jose
    Dominguez-Vazquez, Miguel
    ADVANCES IN MATHEMATICS, 2013, 239 : 1 - 17
  • [9] The angular Laplacian on symmetric Damek-Ricci spaces
    Camporesi, R. O. B. E. R. T. O.
    ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2022, 23 (03) : 1195 - 1291
  • [10] Totally geodesic submanifolds of Damek-Ricci spaces
    Kim, Sinhwi
    Nikolayevsky, Yuri
    Park, JeongHyeong
    REVISTA MATEMATICA IBEROAMERICANA, 2021, 37 (04) : 1321 - 1332