flowCore: a Bioconductor package for high throughput flow cytometry

被引:388
|
作者
Hahne, Florian [1 ]
LeMeur, Nolwenn [1 ,2 ]
Brinkman, Ryan R. [3 ]
Ellis, Byron [4 ]
Haaland, Perry [5 ]
Sarkar, Deepayan [1 ]
Spidlen, Josef [3 ]
Strain, Errol [5 ]
Gentleman, Robert [1 ]
机构
[1] Fred Hutchinson Canc Res Ctr, Dept Life Sci, Computat Biol Program, Div Publ Hlth Sci, Seattle, WA 98109 USA
[2] Univ Rennes 1, IRISA Symbiose, INSERM, EA SeRAIC, F-35042 Rennes, France
[3] British Columbia Canc Res Ctr, Terry Fox Lab, Vancouver, BC V5Z 1L3, Canada
[4] AdBrite Inc, San Francisco, CA 94103 USA
[5] BD Biosci, Res Triangle Pk, NC 27709 USA
来源
BMC BIOINFORMATICS | 2009年 / 10卷
基金
美国国家卫生研究院;
关键词
BIOINFORMATICS;
D O I
10.1186/1471-2105-10-106
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background: Recent advances in automation technologies have enabled the use of flow cytometry for high throughput screening, generating large complex data sets often in clinical trials or drug discovery settings. However, data management and data analysis methods have not advanced sufficiently far from the initial small-scale studies to support modeling in the presence of multiple covariates. Results: We developed a set of flexible open source computational tools in the R package flowCore to facilitate the analysis of these complex data. A key component of which is having suitable data structures that support the application of similar operations to a collection of samples or a clinical cohort. In addition, our software constitutes a shared and extensible research platform that enables collaboration between bioinformaticians, computer scientists, statisticians, biologists and clinicians. This platform will foster the development of novel analytic methods for flow cytometry. Conclusion: The software has been applied in the analysis of various data sets and its data structures have proven to be highly efficient in capturing and organizing the analytic work flow. Finally, a number of additional Bioconductor packages successfully build on the infrastructure provided by flowCore, open new avenues for flow data analysis.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] High throughput screening of molecular targets by flow cytometry.
    Sklar, LA
    Edwards, BS
    Larson, RS
    Prossnitz, E
    Andrejewski, B
    Bennett, T
    Buranda, T
    Chigaev, A
    Foutz, T
    Jackson, C
    Key, A
    Kuckuck, F
    Potter, R
    Ramirez, S
    Simons, P
    Young, S
    Lopez, G
    CLINICAL CANCER RESEARCH, 2001, 7 (11) : 3701S - 3701S
  • [32] High-throughput Multimodal FACED Imaging Flow Cytometry
    Yip, Gwinky G. K.
    Lo, Michelle C. K.
    Lee, Kelvin C. M.
    Lai, Queenie T. K.
    Wong, Kenneth K. Y.
    Tsia, Kevin K.
    2021 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2021,
  • [33] Computational analysis of high-throughput flow cytometry data
    Robinson, J. Paul
    Rajwa, Bartek
    Patsekin, Valery
    Davisson, Vincent Jo
    EXPERT OPINION ON DRUG DISCOVERY, 2012, 7 (08) : 679 - 693
  • [34] High-throughput fluorescence lifetime imaging flow cytometry
    Kanno, Hiroshi
    Hiramatsu, Kotaro
    Mikami, Hideharu
    Nakayashiki, Atsushi
    Yamashita, Shota
    Nagai, Arata
    Okabe, Kohki
    Li, Fan
    Yin, Fei
    Tominaga, Keita
    Bicer, Omer Faruk
    Noma, Ryohei
    Kiani, Bahareh
    Efa, Olga
    Buescher, Martin
    Wazawa, Tetsuichi
    Sonoshita, Masahiro
    Shintaku, Hirofumi
    Nagai, Takeharu
    Braun, Sigurd
    Houston, Jessica P.
    Rashad, Sherif
    Niizuma, Kuniyasu
    Goda, Keisuke
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [35] High Throughput Analysis of Golgi Structure by Imaging Flow Cytometry
    Inbal Wortzel
    Gabriela Koifman
    Varda Rotter
    Rony Seger
    Ziv Porat
    Scientific Reports, 7
  • [36] Orchestrating high-throughput genomic analysis with Bioconductor
    Huber W.
    Carey V.J.
    Gentleman R.
    Anders S.
    Carlson M.
    Carvalho B.S.
    Bravo H.C.
    Davis S.
    Gatto L.
    Girke T.
    Gottardo R.
    Hahne F.
    Hansen K.D.
    Irizarry R.A.
    Lawrence M.
    Love M.I.
    MaCdonald J.
    Obenchain V.
    Oles̈ A.K.
    Pagès H.
    Reyes A.
    Shannon P.
    Smyth G.K.
    Tenenbaum D.
    Waldron L.
    Morgan M.
    Nature Methods, 2015, 12 (2) : 115 - 121
  • [37] Orchestrating high-throughput genomic analysis with Bioconductor
    Huber, Wolfgang
    Carey, Vincent J.
    Gentleman, Robert
    Anders, Simon
    Carlson, Marc
    Carvalho, Benilton S.
    Bravo, Hector Corrada
    Davis, Sean
    Gatto, Laurent
    Girke, Thomas
    Gottardo, Raphael
    Hahne, Florian
    Hansen, Kasper D.
    Irizarry, Rafael A.
    Lawrence, Michael
    Love, Michael I.
    MacDonald, James
    Obenchain, Valerie
    Oles, Andrzej K.
    Pages, Herve
    Reyes, Alejandro
    Shannon, Paul
    Smyth, Gordon K.
    Tenenbaum, Dan
    Waldron, Levi
    Morgan, Martin
    NATURE METHODS, 2015, 12 (02) : 115 - 121
  • [38] Visual Quality Control With CytoMDS, a Bioconductor Package for Low Dimensional Representation of Cytometry Sample Distances
    Hauchamps, Philippe
    Delandre, Simon
    Temmerman, Stephane T.
    Lin, Dan
    Gatto, Laurent
    CYTOMETRY PART A, 2025,
  • [39] Optimizing transformations for automated, high throughput analysis of flow cytometry data
    Finak, Greg
    Perez, Juan-Manuel
    Weng, Andrew
    Gottardo, Raphael
    BMC BIOINFORMATICS, 2010, 11
  • [40] Optimizing transformations for automated, high throughput analysis of flow cytometry data
    Greg Finak
    Juan-Manuel Perez
    Andrew Weng
    Raphael Gottardo
    BMC Bioinformatics, 11