flowCore: a Bioconductor package for high throughput flow cytometry

被引:388
|
作者
Hahne, Florian [1 ]
LeMeur, Nolwenn [1 ,2 ]
Brinkman, Ryan R. [3 ]
Ellis, Byron [4 ]
Haaland, Perry [5 ]
Sarkar, Deepayan [1 ]
Spidlen, Josef [3 ]
Strain, Errol [5 ]
Gentleman, Robert [1 ]
机构
[1] Fred Hutchinson Canc Res Ctr, Dept Life Sci, Computat Biol Program, Div Publ Hlth Sci, Seattle, WA 98109 USA
[2] Univ Rennes 1, IRISA Symbiose, INSERM, EA SeRAIC, F-35042 Rennes, France
[3] British Columbia Canc Res Ctr, Terry Fox Lab, Vancouver, BC V5Z 1L3, Canada
[4] AdBrite Inc, San Francisco, CA 94103 USA
[5] BD Biosci, Res Triangle Pk, NC 27709 USA
来源
BMC BIOINFORMATICS | 2009年 / 10卷
基金
美国国家卫生研究院;
关键词
BIOINFORMATICS;
D O I
10.1186/1471-2105-10-106
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background: Recent advances in automation technologies have enabled the use of flow cytometry for high throughput screening, generating large complex data sets often in clinical trials or drug discovery settings. However, data management and data analysis methods have not advanced sufficiently far from the initial small-scale studies to support modeling in the presence of multiple covariates. Results: We developed a set of flexible open source computational tools in the R package flowCore to facilitate the analysis of these complex data. A key component of which is having suitable data structures that support the application of similar operations to a collection of samples or a clinical cohort. In addition, our software constitutes a shared and extensible research platform that enables collaboration between bioinformaticians, computer scientists, statisticians, biologists and clinicians. This platform will foster the development of novel analytic methods for flow cytometry. Conclusion: The software has been applied in the analysis of various data sets and its data structures have proven to be highly efficient in capturing and organizing the analytic work flow. Finally, a number of additional Bioconductor packages successfully build on the infrastructure provided by flowCore, open new avenues for flow data analysis.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] A Scalable Pipeline for High-Throughput Flow Cytometry
    Wilson, Aaron C.
    Moutsatsos, Ioannis K.
    Yu, Gary
    Pineda, Javier J.
    Feng, Yan
    Auld, Douglas S.
    SLAS DISCOVERY, 2018, 23 (07) : 708 - 718
  • [22] Scalable Analysis of Flow Cytometry Data Using R/Bioconductor
    Klinke, David J., II
    Brundage, Kathleen M.
    CYTOMETRY PART A, 2009, 75A (08) : 699 - 706
  • [23] Flow cytometry for high-throughput, high-content screening
    Edwards, BS
    Oprea, T
    Prossnitz, ER
    Sklar, LA
    CURRENT OPINION IN CHEMICAL BIOLOGY, 2004, 8 (04) : 392 - 398
  • [24] CytoPipeline and CytoPipelineGUI: a Bioconductor R package suite for building and visualizing automated pre-processing pipelines for flow cytometry data
    Philippe Hauchamps
    Babak Bayat
    Simon Delandre
    Mehdi Hamrouni
    Marie Toussaint
    Stephane Temmerman
    Dan Lin
    Laurent Gatto
    BMC Bioinformatics, 25
  • [25] CytoPipeline and CytoPipelineGUI: a Bioconductor R package suite for building and visualizing automated pre-processing pipelines for flow cytometry data
    Hauchamps, Philippe
    Bayat, Babak
    Delandre, Simon
    Hamrouni, Mehdi
    Toussaint, Marie
    Temmerman, Stephane
    Lin, Dan
    Gatto, Laurent
    BMC BIOINFORMATICS, 2024, 25 (01)
  • [26] High throughput mechanotyping via flow cytometry and DNA sequencing
    Pawlak, Matthew R.
    BIOPHYSICAL JOURNAL, 2023, 122 (03) : 536A - 536A
  • [27] Mixing small volumes for continuous high throughput flow cytometry
    Edwards, BS
    Sklar, L
    Jackson, WC
    Kuckuck, FW
    Bennett, TA
    Young, SM
    Prossnitz, ER
    Buranda, T
    Gallegos, CM
    Mammoli, AA
    Lopez, GP
    CYTOMETRY, 2002, : 33 - 33
  • [28] High Throughput Analysis of Golgi Structure by Imaging Flow Cytometry
    Wortzel, Inbal
    Koifman, Gabriela
    Rotter, Varda
    Seger, Rony
    Porat, Ziv
    SCIENTIFIC REPORTS, 2017, 7
  • [29] High throughput automated analysis of big flow cytometry data
    Rahim, Albina
    Meskas, Justin
    Drissler, Sibyl
    Yue, Alice
    Lorenc, Anna
    Laing, Adam
    Saran, Namita
    White, Jacqui
    Abeler-Dorner, Lucie
    Hayday, Adrian
    Brinkman, Ryan R.
    METHODS, 2018, 134 : 164 - 176
  • [30] High-throughput flow cytometry: Validation in microvolume bioassays
    Ramirez, S
    Aiken, CT
    Andrzejewski, B
    Sklar, LA
    Edwards, BS
    CYTOMETRY PART A, 2003, 53A (01) : 55 - 65