Explaining Jupiter's magnetic field and equatorial jet dynamics

被引:60
|
作者
Gastine, T. [1 ]
Wicht, J. [1 ]
Duarte, L. D. V. [1 ,2 ]
Heimpel, M. [3 ]
Becker, A. [4 ]
机构
[1] Max Planck Inst Sonnensyst Forsch, Gottingen, Germany
[2] Univ Lyon, CNRS, Lab Geol Lyon, Lyon, France
[3] Univ Alberta, Dept Phys, Edmonton, AB, Canada
[4] Univ Rostock, Inst Phys, D-18055 Rostock, Germany
基金
加拿大自然科学与工程研究理事会;
关键词
Jupiter dynamics; GIANT PLANETS; SCALING LAWS; ZONAL FLOW; CONVECTION; MODELS; HYDROGEN; SOLAR;
D O I
10.1002/2014GL060814
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Spacecraft data reveal a very Earth-like Jovian magnetic field. This is surprising since numerical simulations have shown that the vastly different interiors of terrestrial and gas planets can strongly affect the internal dynamo process. Here we present the first numerical dynamo that manages to match the structure and strength of the observed magnetic field by embracing the newest models for Jupiter's interior. Simulated dynamo action primarily occurs in the deep high electrical conductivity region, while zonal flows are dynamically constrained to a strong equatorial jet in the outer envelope of low conductivity. Our model reproduces the structure and strength of the observed global magnetic field and predicts that secondary dynamo action associated to the equatorial jet produces banded magnetic features likely observable by the Juno mission. Secular variation in our model scales to about 2000 nT per year and should also be observable during the 1 year nominal mission duration.
引用
收藏
页码:5410 / 5419
页数:10
相关论文
共 50 条
  • [31] Numerical dissipation strongly affects the equatorial jet speed in simulations of hot Jupiter atmospheres
    Hammond, Mark
    Abbot, Dorian S.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2022, 511 (02) : 2313 - 2325
  • [32] On the multiple jet flows in Jupiter's atmosphere
    Liao, XH
    Zhang, KK
    CHINESE ASTRONOMY AND ASTROPHYSICS, 2002, 26 (04) : 469 - 480
  • [33] Dynamics of Jupiter's atmosphere
    Alvin Seiff
    Nature, 2000, 403 : 603 - 605
  • [34] Magnetodisc modelling in Jupiter's magnetosphere using Juno magnetic field data and the paraboloid magnetic field model
    Pensionerov, Ivan A.
    Belenkaya, Elena S.
    Cowley, StanleyW. H.
    Alexeev, Igor I.
    Kalegaev, Vladimir V.
    Parunakian, David A.
    ANNALES GEOPHYSICAE, 2019, 37 (01) : 101 - 109
  • [35] A New Model of Jupiter's Magnetic Field at the Completion of Juno's Prime Mission
    Connerney, J. E. P.
    Timmins, S.
    Oliversen, R. J.
    Espley, J. R.
    Joergensen, J. L.
    Kotsiaros, S.
    Joergensen, P. S.
    Merayo, J. M. G.
    Herceg, M.
    Bloxham, J.
    Moore, K. M.
    Mura, A.
    Moirano, A.
    Bolton, S. J.
    Levin, S. M.
    JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 2022, 127 (02)
  • [36] Significance of Dungey-cycle flows in Jupiter's and Saturn's magnetospheres, and their identification on closed equatorial field lines
    Badman, S. V.
    Cowley, S. W. H.
    ANNALES GEOPHYSICAE, 2007, 25 (04) : 941 - 951
  • [38] Author Correction: Fluctuations in Jupiter’s equatorial stratospheric oscillation
    Arrate Antuñano
    Richard G. Cosentino
    Leigh N. Fletcher
    Amy A. Simon
    Thomas K. Greathouse
    Glenn S. Orton
    Nature Astronomy, 2021, 5 : 846 - 846
  • [39] Wind variations in Jupiter's equatorial atmosphere: A QQO counterpart?
    Simon-Miller, Amy A.
    Poston, Bradley W.
    Orton, Glenn S.
    Fisher, Brendan
    ICARUS, 2007, 186 (01) : 192 - 203
  • [40] Mapping the zonal winds of Jupiter's stratospheric equatorial oscillation
    Benmahi, B.
    Cavalie, T.
    Greathouse, T. K.
    Hue, V
    Giles, R.
    Guerlet, S.
    Spiga, A.
    Cosentino, R.
    ASTRONOMY & ASTROPHYSICS, 2021, 652