Explaining Jupiter's magnetic field and equatorial jet dynamics

被引:60
|
作者
Gastine, T. [1 ]
Wicht, J. [1 ]
Duarte, L. D. V. [1 ,2 ]
Heimpel, M. [3 ]
Becker, A. [4 ]
机构
[1] Max Planck Inst Sonnensyst Forsch, Gottingen, Germany
[2] Univ Lyon, CNRS, Lab Geol Lyon, Lyon, France
[3] Univ Alberta, Dept Phys, Edmonton, AB, Canada
[4] Univ Rostock, Inst Phys, D-18055 Rostock, Germany
基金
加拿大自然科学与工程研究理事会;
关键词
Jupiter dynamics; GIANT PLANETS; SCALING LAWS; ZONAL FLOW; CONVECTION; MODELS; HYDROGEN; SOLAR;
D O I
10.1002/2014GL060814
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Spacecraft data reveal a very Earth-like Jovian magnetic field. This is surprising since numerical simulations have shown that the vastly different interiors of terrestrial and gas planets can strongly affect the internal dynamo process. Here we present the first numerical dynamo that manages to match the structure and strength of the observed magnetic field by embracing the newest models for Jupiter's interior. Simulated dynamo action primarily occurs in the deep high electrical conductivity region, while zonal flows are dynamically constrained to a strong equatorial jet in the outer envelope of low conductivity. Our model reproduces the structure and strength of the observed global magnetic field and predicts that secondary dynamo action associated to the equatorial jet produces banded magnetic features likely observable by the Juno mission. Secular variation in our model scales to about 2000 nT per year and should also be observable during the 1 year nominal mission duration.
引用
收藏
页码:5410 / 5419
页数:10
相关论文
共 50 条
  • [21] MAGNETIC-FIELD OF JUPITER
    DAVIS, L
    JONES, DE
    SMITH, EJ
    TRANSACTIONS-AMERICAN GEOPHYSICAL UNION, 1975, 56 (12): : 1041 - 1041
  • [22] Dynamics of Jupiter's equatorial region at cloud top level from Cassini and HST images
    Garcia-Melendo, E.
    Arregi, J.
    Rojas, J. F.
    Hueso, R.
    Barrado-Izagirre, N.
    Gomez-Forrellad, J. M.
    Perez-Hoyos, S.
    Sanz-Requena, J. F.
    Sanchez-Lavega, A.
    ICARUS, 2011, 211 (02) : 1242 - 1257
  • [23] On the tawny hue of Jupiter's equatorial zone.
    Williams, AS
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 1921, 82 (01) : 0417 - 0417
  • [24] Infrared Characterization of Jupiter's Equatorial Disturbance Cycle
    Antunano, Arrate
    Fletcher, Leigh N.
    Orton, Glenn S.
    Melin, Henrik
    Rogers, John H.
    Harrington, Joseph
    Donnelly, Padraig T.
    Rowe-Gurney, Naomi
    Blake, James S. D.
    GEOPHYSICAL RESEARCH LETTERS, 2018, 45 (20) : 10987 - 10995
  • [25] Contributions to Jupiter's Gravity Field From Dynamics in the Dynamo Region
    Kulowski, Laura
    Cao, Hao
    Bloxham, Jeremy
    JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 2020, 125 (05)
  • [26] A multifractal approach applied to the magnetic field turbulence in Jupiter's magnetosheath
    Bolzan, M. J. A.
    Echer, E.
    PLANETARY AND SPACE SCIENCE, 2014, 91 : 77 - 82
  • [27] The equatorial asymmetry of a magnetic field
    M. Yu. Reshetnyak
    Moscow University Physics Bulletin, 2017, 72 : 396 - 401
  • [28] A model of Jupiter's magnetospheric magnetic field with variable magnetopause flaring
    Belenkaya, ES
    Bobrovnikov, SY
    Alexeev, II
    Kalegaev, VV
    Cowley, SWH
    PLANETARY AND SPACE SCIENCE, 2005, 53 (09) : 863 - 872
  • [29] MAIN MAGNETIC-FIELD OF JUPITER
    ACUNA, MH
    NESS, NF
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1976, 81 (16) : 2917 - 2922
  • [30] AZIMUTHAL MAGNETIC-FIELD AT JUPITER
    PARISH, JL
    GOERTZ, CK
    THOMSEN, MF
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1980, 85 (NA8): : 4152 - 4156