Extremal decision rules in quantum hypothesis testing

被引:37
|
作者
Parthasarathy, KR [1 ]
机构
[1] Indian Inst Technol, New Delhi 110016, India
关键词
D O I
10.1142/S0219025799000321
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a complete description of the extreme points of the convex set of all decision rules in testing multiple hypotheses concerning a quantum system whose states are described by density matrices in a finite-dimensional Hilbert space. Holevo's equations for an optimal decision are derived by methods of elementary calculus and a simple example is given in order to illustrate the nonuniqueness of optimal decision rules.
引用
收藏
页码:557 / 568
页数:12
相关论文
共 50 条
  • [1] Binary Hypothesis Testing with Deterministic Finite-Memory Decision Rules
    Berg, Tomer
    Ordentlich, Or
    Shayevitz, Ofer
    [J]. 2020 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2020, : 1259 - 1264
  • [2] Extremal distributions in information theory and hypothesis testing
    Pandit, C
    Huang, JY
    Meyn, S
    Veeravalli, V
    [J]. 2004 IEEE INFORMATION THEORY WORKSHOP, PROCEEDINGS, 2004, : 76 - 81
  • [3] Towards the Design of Prospect-Theory based Human Decision Rules for Hypothesis Testing
    Nadendla, V. Sriram Siddhardh
    Brahma, Swastik
    Varshney, Pramod K.
    [J]. 2016 54TH ANNUAL ALLERTON CONFERENCE ON COMMUNICATION, CONTROL, AND COMPUTING (ALLERTON), 2016, : 766 - 773
  • [4] Testing decision rules for multiattribute decision making
    Seidl, C
    Traub, S
    [J]. CURRENT TRENDS IN ECONOMICS: THEORY AND APPLICATIONS, 1999, 8 : 413 - 454
  • [5] Optimal Decision Rules for Simple Hypothesis Testing Under General Criterion Involving Error Probabilities
    Dulek, Berkan
    Ozturk, Cuneyd
    Gezici, Sinan
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2020, 27 : 261 - 265
  • [6] Quantum Sequential Hypothesis Testing
    Vargas, Esteban Martinez
    Hirche, Christoph
    Sentis, Gael
    Skotiniotis, Michalis
    Carrizo, Marta
    Munoz-Tapia, Ramon
    Calsamiglia, John
    [J]. PHYSICAL REVIEW LETTERS, 2021, 126 (18)
  • [7] Postselected Quantum Hypothesis Testing
    Regula, Bartosz
    Lami, Ludovico
    Wilde, Mark M.
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2024, 70 (05) : 3453 - 3469
  • [8] Continuous Quantum Hypothesis Testing
    Tsang, Mankei
    [J]. PHYSICAL REVIEW LETTERS, 2012, 108 (17)
  • [9] On Composite Quantum Hypothesis Testing
    Mario Berta
    Fernando G. S. L. Brandão
    Christoph Hirche
    [J]. Communications in Mathematical Physics, 2021, 385 : 55 - 77
  • [10] On Composite Quantum Hypothesis Testing
    Berta, Mario
    Brandao, Fernando G. S. L.
    Hirche, Christoph
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2021, 385 (01) : 55 - 77