On Composite Quantum Hypothesis Testing

被引:0
|
作者
Mario Berta
Fernando G. S. L. Brandão
Christoph Hirche
机构
[1] Imperial College London,Department of Computing
[2] IQIM,QMATH, Department of Mathematical Sciences
[3] California Institute of Technology,undefined
[4] AWS Center for Quantum Computing,undefined
[5] University of Copenhagen,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We extend quantum Stein’s lemma in asymmetric quantum hypothesis testing to composite null and alternative hypotheses. As our main result, we show that the asymptotic error exponent for testing convex combinations of quantum states ρ⊗n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho ^{\otimes n}$$\end{document} against convex combinations of quantum states σ⊗n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma ^{\otimes n}$$\end{document} can be written as a regularized quantum relative entropy formula. We prove that in general such a regularization is needed but also discuss various settings where our formula as well as extensions thereof become single-letter. This includes an operational interpretation of the relative entropy of coherence in terms of hypothesis testing. For our proof, we start from the composite Stein’s lemma for classical probability distributions and lift the result to the non-commutative setting by using elementary properties of quantum entropy. Finally, our findings also imply an improved recoverability lower bound on the conditional quantum mutual information in terms of the regularized quantum relative entropy—featuring an explicit and universal recovery map.
引用
收藏
页码:55 / 77
页数:22
相关论文
共 50 条
  • [1] On Composite Quantum Hypothesis Testing
    Berta, Mario
    Brandao, Fernando G. S. L.
    Hirche, Christoph
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2021, 385 (01) : 55 - 77
  • [2] Composite hypothesis testing
    Liu, WC
    Woodward, JA
    [J]. AMERICAN STATISTICAL ASSOCIATION - 1996 PROCEEDINGS OF THE STATISTICAL COMPUTING SECTION, 1996, : 304 - 305
  • [3] Postselected Quantum Hypothesis Testing
    Regula, Bartosz
    Lami, Ludovico
    Wilde, Mark M.
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2024, 70 (05) : 3453 - 3469
  • [4] Quantum Sequential Hypothesis Testing
    Vargas, Esteban Martinez
    Hirche, Christoph
    Sentis, Gael
    Skotiniotis, Michalis
    Carrizo, Marta
    Munoz-Tapia, Ramon
    Calsamiglia, John
    [J]. PHYSICAL REVIEW LETTERS, 2021, 126 (18)
  • [5] Continuous Quantum Hypothesis Testing
    Tsang, Mankei
    [J]. PHYSICAL REVIEW LETTERS, 2012, 108 (17)
  • [6] ROBUST HYPOTHESIS TESTING WITH COMPOSITE DISTANCES
    Guel, Goekhan
    Zoubir, Abdelhak M.
    [J]. 2014 IEEE WORKSHOP ON STATISTICAL SIGNAL PROCESSING (SSP), 2014, : 432 - 435
  • [7] A Sequential Framework for Composite Hypothesis Testing
    Bar, Shahar
    Tabrikian, Joseph
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2018, 66 (20) : 5484 - 5499
  • [8] On error exponents in quantum hypothesis testing
    Ogawa, T
    Hayashi, M
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2004, 50 (06) : 1368 - 1372
  • [9] Quantum hypothesis testing with group structure
    Rossi, Zane M.
    Chuang, Isaac L.
    [J]. PHYSICAL REVIEW A, 2021, 104 (01)
  • [10] Quantum Hypothesis Testing and Sufficient Subalgebras
    Anna Jenčová
    [J]. Letters in Mathematical Physics, 2010, 93 : 15 - 27