On Composite Quantum Hypothesis Testing

被引:0
|
作者
Mario Berta
Fernando G. S. L. Brandão
Christoph Hirche
机构
[1] Imperial College London,Department of Computing
[2] IQIM,QMATH, Department of Mathematical Sciences
[3] California Institute of Technology,undefined
[4] AWS Center for Quantum Computing,undefined
[5] University of Copenhagen,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We extend quantum Stein’s lemma in asymmetric quantum hypothesis testing to composite null and alternative hypotheses. As our main result, we show that the asymptotic error exponent for testing convex combinations of quantum states ρ⊗n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho ^{\otimes n}$$\end{document} against convex combinations of quantum states σ⊗n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma ^{\otimes n}$$\end{document} can be written as a regularized quantum relative entropy formula. We prove that in general such a regularization is needed but also discuss various settings where our formula as well as extensions thereof become single-letter. This includes an operational interpretation of the relative entropy of coherence in terms of hypothesis testing. For our proof, we start from the composite Stein’s lemma for classical probability distributions and lift the result to the non-commutative setting by using elementary properties of quantum entropy. Finally, our findings also imply an improved recoverability lower bound on the conditional quantum mutual information in terms of the regularized quantum relative entropy—featuring an explicit and universal recovery map.
引用
收藏
页码:55 / 77
页数:22
相关论文
共 50 条
  • [41] Recoverability of quantum channels via hypothesis testing
    Anna Jenčová
    [J]. Letters in Mathematical Physics, 114
  • [42] Hypothesis testing with a continuously monitored quantum system
    Kiilerich, Alexander Holm
    Molmer, Klaus
    [J]. PHYSICAL REVIEW A, 2018, 98 (02)
  • [43] On the Chernoff bound for efficiency of quantum hypothesis testing
    Kargin, V
    [J]. ANNALS OF STATISTICS, 2005, 33 (02): : 959 - 976
  • [44] Optimal provable robustness of quantum classification via quantum hypothesis testing
    Maurice Weber
    Nana Liu
    Bo Li
    Ce Zhang
    Zhikuan Zhao
    [J]. npj Quantum Information, 7
  • [45] Quantum Hypothesis Testing and the Operational Interpretation of the Quantum Renyi Relative Entropies
    Mosonyi, Milan
    Ogawa, Tomohiro
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2015, 334 (03) : 1617 - 1648
  • [46] Black Box Work Extraction and Composite Hypothesis Testing
    Watanabe, Kaito
    Takagi, Ryuji
    [J]. Physical Review Letters, 2024, 133 (25)
  • [47] Optimal provable robustness of quantum classification via quantum hypothesis testing
    Weber, Maurice
    Liu, Nana
    Li, Bo
    Zhang, Ce
    Zhao, Zhikuan
    [J]. NPJ QUANTUM INFORMATION, 2021, 7 (01)
  • [48] Bayesian Sequential Composite Hypothesis Testing in Discrete Time*
    Ekstrom, Erik
    Wang, Yuqiong
    [J]. ESAIM-PROBABILITY AND STATISTICS, 2022, 26 : 265 - 282
  • [49] Bayesian Sequential Composite Hypothesis Testing in Discrete Time
    Ekström, Erik
    Wang, Yuqiong
    [J]. ESAIM - Probability and Statistics, 2022, 26 : 265 - 282
  • [50] Testing Composite Hypothesis Based on the Density Power Divergence
    A. Basu
    A. Mandal
    N. Martin
    L. Pardo
    [J]. Sankhya B, 2018, 80 (2) : 222 - 262