Extremal decision rules in quantum hypothesis testing

被引:37
|
作者
Parthasarathy, KR [1 ]
机构
[1] Indian Inst Technol, New Delhi 110016, India
关键词
D O I
10.1142/S0219025799000321
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a complete description of the extreme points of the convex set of all decision rules in testing multiple hypotheses concerning a quantum system whose states are described by density matrices in a finite-dimensional Hilbert space. Holevo's equations for an optimal decision are derived by methods of elementary calculus and a simple example is given in order to illustrate the nonuniqueness of optimal decision rules.
引用
收藏
页码:557 / 568
页数:12
相关论文
共 50 条
  • [31] The data aggregation problem in quantum hypothesis testing
    Cialdi, Simone
    Paris, Matteo G. A.
    EUROPEAN PHYSICAL JOURNAL D, 2015, 69 (01):
  • [32] The data aggregation problem in quantum hypothesis testing
    Simone Cialdi
    Matteo G. A. Paris
    The European Physical Journal D, 2015, 69
  • [33] Finitely Repeated Adversarial Quantum Hypothesis Testing
    Hu, Yinan
    Zhu, Quanyan
    IFAC PAPERSONLINE, 2023, 56 (02): : 5894 - 5899
  • [34] Asymmetric quantum hypothesis testing with Gaussian states
    Spedalieri, Gaetana
    Braunstein, Samuel L.
    PHYSICAL REVIEW A, 2014, 90 (05):
  • [35] Asymptotic error rates in quantum hypothesis testing
    Audenaert, K. M. R.
    Nussbaum, M.
    Szkola, A.
    Verstraete, F.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2008, 279 (01) : 251 - 283
  • [36] Asymptotic Error Rates in Quantum Hypothesis Testing
    K. M. R. Audenaert
    M. Nussbaum
    A. Szkoła
    F. Verstraete
    Communications in Mathematical Physics, 2008, 279 : 251 - 283
  • [38] Recoverability of quantum channels via hypothesis testing
    Jencova, Anna
    LETTERS IN MATHEMATICAL PHYSICS, 2024, 114 (01)
  • [39] Hypothesis testing with a continuously monitored quantum system
    Kiilerich, Alexander Holm
    Molmer, Klaus
    PHYSICAL REVIEW A, 2018, 98 (02)
  • [40] On the Chernoff bound for efficiency of quantum hypothesis testing
    Kargin, V
    ANNALS OF STATISTICS, 2005, 33 (02): : 959 - 976