Bayesian non-parametric analysis of multirater ordinal data, with application to prioritizing research goals for prevention of suicide

被引:5
|
作者
Savitsky, Terrance D. [1 ]
Dalal, Siddhartha R. [2 ]
机构
[1] US Bur Labor Stat, Washington, DC 20212 USA
[2] Columbia Univ, New York, NY USA
关键词
Bayesian hierarchical models; Latent models; Markov chain Monte Carlo methods; Ordinal data; Poisson-Dirichlet process; MIXTURE-MODELS; INFERENCE; PRIORS;
D O I
10.1111/rssc.12049
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Our application data are produced from a scalable, on-line expert elicitation process that incorporates hundreds of participating raters to score the importance of research goals for the prevention of suicide with the purpose of informing policy making. We develop a Bayesian formulation for analysis of ordinal multirater data motivated by our application. Our model employs a non-parametric mixture distribution over rater-indexed parameters for a latent continuous response under a Poisson-Dirichlet process mixing measure that allows inference about distinct rater behavioural and learning typologies from realized clusters.
引用
收藏
页码:539 / 557
页数:19
相关论文
共 50 条
  • [2] Non-parametric Bayesian analysis of clustered survival data
    Lee, Jaeyong
    STATISTICS, 2008, 42 (06) : 515 - 526
  • [3] Bayesian Non-Parametric Ordinal Regression Under a Monotonicity Constraint
    Saarela, Olli
    Rohrbeck, Christian
    Arjas, Elja
    BAYESIAN ANALYSIS, 2023, 18 (01): : 193 - 221
  • [4] Bayesian Non-Parametric Clustering of Ranking Data
    Meila, Marina
    Chen, Harr
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2016, 38 (11) : 2156 - 2169
  • [5] A non-parametric Bayesian model for bounded data
    Thanh Minh Nguyen
    Wu, Q. M. Jonathan
    PATTERN RECOGNITION, 2015, 48 (06) : 2084 - 2095
  • [6] Mining and visualising ordinal data with non-parametric continuous BBNs
    Hanea, A. M.
    Kurowicka, D.
    Cooke, R. M.
    Ababei, D. A.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2010, 54 (03) : 668 - 687
  • [7] A non-parametric method for graphical analysis of survey data: An application to consumer satisfaction research
    Estelami, H
    ADVANCES IN CONSUMER RESEARCH, VOL. XXV, 1998, 25 : 116 - 123
  • [8] A NON-PARAMETRIC BAYESIAN CLUSTERING FOR GENE EXPRESSION DATA
    Wang, Liming
    Wang, Xiaodong
    2012 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP), 2012, : 556 - 559
  • [9] Parametric and Non-parametric Bayesian Imputation for Right Censored Survival Data
    Moghaddam, Shirin
    Newell, John
    Hinde, John
    DEVELOPMENTS IN STATISTICAL MODELLING, IWSM 2024, 2024, : 153 - 158
  • [10] A Bayesian non-parametric Potts model with application to pre-surgical FMRI data
    Johnson, Timothy D.
    Liu, Zhuqing
    Bartsch, Andreas J.
    Nichols, Thomas E.
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2013, 22 (04) : 364 - 381