Bayesian non-parametric analysis of multirater ordinal data, with application to prioritizing research goals for prevention of suicide

被引:5
|
作者
Savitsky, Terrance D. [1 ]
Dalal, Siddhartha R. [2 ]
机构
[1] US Bur Labor Stat, Washington, DC 20212 USA
[2] Columbia Univ, New York, NY USA
关键词
Bayesian hierarchical models; Latent models; Markov chain Monte Carlo methods; Ordinal data; Poisson-Dirichlet process; MIXTURE-MODELS; INFERENCE; PRIORS;
D O I
10.1111/rssc.12049
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Our application data are produced from a scalable, on-line expert elicitation process that incorporates hundreds of participating raters to score the importance of research goals for the prevention of suicide with the purpose of informing policy making. We develop a Bayesian formulation for analysis of ordinal multirater data motivated by our application. Our model employs a non-parametric mixture distribution over rater-indexed parameters for a latent continuous response under a Poisson-Dirichlet process mixing measure that allows inference about distinct rater behavioural and learning typologies from realized clusters.
引用
收藏
页码:539 / 557
页数:19
相关论文
共 50 条
  • [21] Minimally informative prior distributions for non-parametric Bayesian analysis
    Bush, Christopher A.
    Lee, Juhee
    MacEachern, Steven N.
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2010, 72 : 253 - 268
  • [22] Bayesian Non-Parametric Factor Analysis for Longitudinal Spatial Surfaces
    Berchuck, Samuel I.
    Janko, Mark
    Medeiros, Felipe A.
    Pan, William
    Mukherjee, Sayan
    BAYESIAN ANALYSIS, 2022, 17 (02): : 435 - 464
  • [23] Non-parametric analysis of serial dependence in time series using ordinal patterns
    Weiss, Christian H.
    Marin, Manuel Ruiz
    Keller, Karsten
    Matilla-Garcia, Mariano
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2022, 168
  • [24] Bayesian non-parametric models for spatially indexed data of mixed type
    Papageorgiou, Georgios
    Richardson, Sylvia
    Best, Nicky
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2015, 77 (05) : 973 - 999
  • [25] Bayesian non-parametric simultaneous quantile regression for complete and grid data
    Das, Priyam
    Ghosal, Subhashis
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2018, 127 : 172 - 186
  • [26] A non-parametric Bayesian approach to decompounding from high frequency data
    Gugushvili S.
    van der Meulen F.
    Spreij P.
    Statistical Inference for Stochastic Processes, 2018, 21 (1) : 53 - 79
  • [27] Bayesian joint relatively quantile regression of latent ordinal multivariate linear models with application to multirater agreement analysis
    Tian, Yuzhu
    Wu, Chunho
    Tang, Manlai
    Tian, Maozai
    ASTA-ADVANCES IN STATISTICAL ANALYSIS, 2025, 109 (01) : 85 - 116
  • [28] Modelling stochastic order in the analysis of receiver operating characteristic data: Bayesian non-parametric approaches
    Hanson, Timothy E.
    Kottas, Athanasios
    Branscum, Adam J.
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2008, 57 : 207 - 225
  • [29] Non-Parametric Analysis of Efficiency: An Application to the Pharmaceutical Industry
    Diaz, Ricardo F.
    Sanchez-Robles, Blanca
    MATHEMATICS, 2020, 8 (09)
  • [30] Parametric and non-parametric statistical analysis of DT-MRI data
    Pajevic, S
    Basser, PJ
    JOURNAL OF MAGNETIC RESONANCE, 2003, 161 (01) : 1 - 14