A generic framework for blind source separation in structured nonlinear models

被引:41
|
作者
Taleb, A [1 ]
机构
[1] Ericsson Res, Dept Multimedia Technol, Stockholm, Sweden
[2] LIS INPG, Grenoble, France
[3] Curtin Univ Technol, Australian Telecommun Res Inst, Perth, WA 6001, Australia
关键词
adaptive algorithms; blind source separation; equivariance; independent components analysis; nonlinear factor analysis; nonlinear parametric estimation;
D O I
10.1109/TSP.2002.800399
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper is concerned with blind source separation in nonlinear models. Special attention is paid to separability issues. Results show that separation is impossible in the general case. However, for specific nonlinear models, the problem becomes tractable. A generic set of parametric nonlinear mixtures is considered: This set has the Lie group structure (a group structure with continuous binary operation). In the parameter set, a definition of a relative gradient is given and is used to design both batch and stochastic algorithms. For the latter, it is shown how a proper use of the relative gradient leads to equivariant adaptive algorithms.
引用
收藏
页码:1819 / 1830
页数:12
相关论文
共 50 条
  • [41] Implementation of Nonlinear Blind Source Separation for CHEMFET Sensor Arrays
    Aziz, Nurhakimah Bt Abd
    Abdullah, Wan Fazlida Hanim
    Tahir, Nooritawati Md
    2014 IEEE 10TH INTERNATIONAL COLLOQUIUM ON SIGNAL PROCESSING & ITS APPLICATIONS (CSPA 2014), 2014, : 238 - 241
  • [42] Blind Source Separation in Nonlinear Mixtures: Separability and a Basic Algorithm
    Ehsandoust, Bahram
    Babaie-Zadeh, Massoud
    Rivet, Bertrand
    Jutten, Christian
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2017, 65 (16) : 4339 - 4352
  • [43] An ensemble learning approach to nonlinear dynamic blind source separation using state-space models
    Valpola, H
    Honkela, A
    Karhunen, J
    PROCEEDING OF THE 2002 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-3, 2002, : 460 - 465
  • [44] Independent slow feature analysis and nonlinear blind source separation
    Blaschke, T
    Wiskott, L
    INDEPENDENT COMPONENT ANALYSIS AND BLIND SIGNAL SEPARATION, 2004, 3195 : 742 - 749
  • [45] An adaptive nonlinear function controlled by kurtosis for blind source separation
    Nakayama, K
    Hirano, A
    Sakai, T
    PROCEEDING OF THE 2002 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-3, 2002, : 1234 - 1239
  • [46] Post-nonlinear blind source separation using methaheuristics
    Martín-Clemente, R
    Puntonet, CG
    Rojas, F
    ELECTRONICS LETTERS, 2003, 39 (24) : 1765 - 1766
  • [47] Blind source separation with nonlinear autocorrelation and non-Gaussianity
    Shi, Zhenwei
    Jiang, Zhiguo
    Zhou, Fugen
    Yin, Jihao
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 229 (01) : 240 - 247
  • [48] Flexible ICA solution for nonlinear blind source separation problem
    Vigliano, D
    Uncini, A
    ELECTRONICS LETTERS, 2003, 39 (22) : 1616 - 1617
  • [49] Maximum likelihood approach to nonlinear convolutive blind source separation
    Zhang, JY
    Khor, LC
    Woo, WL
    Dlay, SS
    INDEPENDENT COMPONENT ANALYSIS AND BLIND SIGNAL SEPARATION, PROCEEDINGS, 2006, 3889 : 926 - 933
  • [50] An Extension of Slow Feature Analysis for Nonlinear Blind Source Separation
    Sprekeler, Henning
    Zito, Tiziano
    Wiskott, Laurenz
    JOURNAL OF MACHINE LEARNING RESEARCH, 2014, 15 : 921 - 947