A generic framework for blind source separation in structured nonlinear models

被引:41
|
作者
Taleb, A [1 ]
机构
[1] Ericsson Res, Dept Multimedia Technol, Stockholm, Sweden
[2] LIS INPG, Grenoble, France
[3] Curtin Univ Technol, Australian Telecommun Res Inst, Perth, WA 6001, Australia
关键词
adaptive algorithms; blind source separation; equivariance; independent components analysis; nonlinear factor analysis; nonlinear parametric estimation;
D O I
10.1109/TSP.2002.800399
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper is concerned with blind source separation in nonlinear models. Special attention is paid to separability issues. Results show that separation is impossible in the general case. However, for specific nonlinear models, the problem becomes tractable. A generic set of parametric nonlinear mixtures is considered: This set has the Lie group structure (a group structure with continuous binary operation). In the parameter set, a definition of a relative gradient is given and is used to design both batch and stochastic algorithms. For the latter, it is shown how a proper use of the relative gradient leads to equivariant adaptive algorithms.
引用
收藏
页码:1819 / 1830
页数:12
相关论文
共 50 条
  • [21] EEG montage analysis in the Blind Source Separation framework
    Ruiz, Ricardo A. Salido
    Ranta, Radu
    Louis-Dorr, Valerie
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2011, 6 (01) : 77 - 84
  • [22] Nonlinear blind source separation using a genetic algorithm
    Tan, Y
    Wang, J
    PROCEEDINGS OF THE 2001 CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1 AND 2, 2001, : 859 - 866
  • [23] Kernel-based nonlinear blind source separation
    Harmeling, S
    Ziehe, A
    Kawanabe, M
    Müller, KR
    NEURAL COMPUTATION, 2003, 15 (05) : 1089 - 1124
  • [24] Nonlinear blind source separation by Spline Neural Networks
    Solazzi, M
    Piazza, F
    Uncini, A
    2001 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS I-VI, PROCEEDINGS: VOL I: SPEECH PROCESSING 1; VOL II: SPEECH PROCESSING 2 IND TECHNOL TRACK DESIGN & IMPLEMENTATION OF SIGNAL PROCESSING SYSTEMS NEURALNETWORKS FOR SIGNAL PROCESSING; VOL III: IMAGE & MULTIDIMENSIONAL SIGNAL PROCESSING MULTIMEDIA SIGNAL PROCESSING, 2001, : 2781 - 2784
  • [25] Nonlinear blind source separation by variational Bayesian learning
    Valpola, H
    Oja, E
    Ilin, A
    Honkela, A
    Karhunen, J
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2003, E86A (03) : 532 - 541
  • [26] Nonlinear blind source separation using coherence function
    Oku, T
    Sano, A
    SICE 2003 ANNUAL CONFERENCE, VOLS 1-3, 2003, : 2555 - 2560
  • [27] Performing Nonlinear Blind Source Separation With Signal Invariants
    Levin, David N.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2010, 58 (04) : 2131 - 2140
  • [28] Nonlinear blind source separation exploiting spatial nonstationarity
    Sipila, Mika
    Nordhausen, Klaus
    Taskinen, Sara
    INFORMATION SCIENCES, 2024, 665
  • [29] Genetic Algorithm approach to nonlinear blind source separation
    Rojas, F
    Puntonet, CG
    Rojas, I
    Ortega, J
    Prieto, A
    CEC'02: PROCEEDINGS OF THE 2002 CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1 AND 2, 2002, : 1098 - 1102
  • [30] Kernel feature spaces and nonlinear blind source separation
    Harmeling, S
    Ziehe, A
    Kawanabe, M
    Müller, KR
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 14, VOLS 1 AND 2, 2002, 14 : 761 - 768