A generic framework for blind source separation in structured nonlinear models

被引:41
|
作者
Taleb, A [1 ]
机构
[1] Ericsson Res, Dept Multimedia Technol, Stockholm, Sweden
[2] LIS INPG, Grenoble, France
[3] Curtin Univ Technol, Australian Telecommun Res Inst, Perth, WA 6001, Australia
关键词
adaptive algorithms; blind source separation; equivariance; independent components analysis; nonlinear factor analysis; nonlinear parametric estimation;
D O I
10.1109/TSP.2002.800399
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper is concerned with blind source separation in nonlinear models. Special attention is paid to separability issues. Results show that separation is impossible in the general case. However, for specific nonlinear models, the problem becomes tractable. A generic set of parametric nonlinear mixtures is considered: This set has the Lie group structure (a group structure with continuous binary operation). In the parameter set, a definition of a relative gradient is given and is used to design both batch and stochastic algorithms. For the latter, it is shown how a proper use of the relative gradient leads to equivariant adaptive algorithms.
引用
收藏
页码:1819 / 1830
页数:12
相关论文
共 50 条
  • [1] Source separation in structured nonlinear models
    Taleb, A
    2001 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS I-VI, PROCEEDINGS: VOL I: SPEECH PROCESSING 1; VOL II: SPEECH PROCESSING 2 IND TECHNOL TRACK DESIGN & IMPLEMENTATION OF SIGNAL PROCESSING SYSTEMS NEURALNETWORKS FOR SIGNAL PROCESSING; VOL III: IMAGE & MULTIDIMENSIONAL SIGNAL PROCESSING MULTIMEDIA SIGNAL PROCESSING - VOL IV: SIGNAL PROCESSING FOR COMMUNICATIONS; VOL V: SIGNAL PROCESSING EDUCATION SENSOR ARRAY & MULTICHANNEL SIGNAL PROCESSING AUDIO & ELECTROACOUSTICS; VOL VI: SIGNAL PROCESSING THEORY & METHODS STUDENT FORUM, 2001, : 3513 - 3516
  • [2] Generic Uniqueness of a Structured Matrix Factorization and Applications in Blind Source Separation
    Domanov, Ignat
    De lathauwer, Lieven
    IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2016, 10 (04) : 701 - 711
  • [3] Blind source separation of nonlinear mixing models
    Lee, TW
    Koehler, BU
    Orglmeister, R
    NEURAL NETWORKS FOR SIGNAL PROCESSING VII, 1997, : 406 - 415
  • [4] Nonlinear innovation to blind source separation
    Shi, Zhenwei
    Zhang, Changshui
    NEUROCOMPUTING, 2007, 71 (1-3) : 406 - 410
  • [5] Source distribution models for blind source separation
    Rai, CS
    Singh, Y
    NEUROCOMPUTING, 2004, 57 : 501 - 505
  • [6] Temporal models in blind source separation
    Parra, LC
    ADAPTIVE PROCESSING OF SEQUENCES AND DATA STRUCTURES, 1998, 1387 : 229 - 247
  • [7] Generic Model Framework for the Synthesis of Structured Reactive Separation Processes
    Sand, Guido
    Tylko, Markus
    Barkmann, Sabine
    Schembecker, Gerhard
    Engell, Sebastian
    16TH EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING AND 9TH INTERNATIONAL SYMPOSIUM ON PROCESS SYSTEMS ENGINEERING, 2006, 21 : 1075 - 1081
  • [8] Nonlinear Blind Source Separation for Sparse Sources
    Ehsandoust, Bahram
    Rivet, Bertrand
    Jutten, Christian
    Babaie-Zadeh, Massoud
    2016 24TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2016, : 1583 - 1587
  • [9] Nonlinear blind source separation using kernels
    Martinez, D
    Bray, A
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 2003, 14 (01): : 228 - 235
  • [10] Discussion on Nonlinear Functions of the Blind Source Separation
    XIE Sheng-Li HE Zhao-Shui ZHANG Jin-Long FU Yu-Li (School of Electronics & Information Engineering
    自动化学报, 2005, (06) : 13 - 20