Consider the minimum s-t cut problem in an embedded undirected planar graph. Let p be the minimum number of faces that a curve from s to t passes through. If p = 1, that is, the vertices s and t are on the boundary of the same face, then the minimum cut can be found in O(n) time. For general planar graphs this cut can be found in O(n log n) time. We unify these results and give an O(n log p) time algorithm. We use cut-cycles to obtain the value of the minimum cut, and study the structure of these cycles to get an efficient algorithm.
机构:
Guangzhou Univ, Dept Comp Sci, Guangzhou, Guangdong, Peoples R China
Fudan Univ, Shanghai Key Lab Intelligent Informat Proc, Shanghai, Peoples R ChinaGuangzhou Univ, Dept Comp Sci, Guangzhou, Guangdong, Peoples R China
Chen, Wenbin
Samatova, Nagiza F.
论文数: 0引用数: 0
h-index: 0
机构:
N Carolina State Univ, Dept Comp Sci, Raleigh, NC 27695 USA
Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USAGuangzhou Univ, Dept Comp Sci, Guangzhou, Guangdong, Peoples R China
Samatova, Nagiza F.
Stallmann, Matthias F.
论文数: 0引用数: 0
h-index: 0
机构:
N Carolina State Univ, Dept Comp Sci, Raleigh, NC 27695 USAGuangzhou Univ, Dept Comp Sci, Guangzhou, Guangdong, Peoples R China
Stallmann, Matthias F.
Hendrix, William
论文数: 0引用数: 0
h-index: 0
机构:
N Carolina State Univ, Dept Comp Sci, Raleigh, NC 27695 USA
Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USAGuangzhou Univ, Dept Comp Sci, Guangzhou, Guangdong, Peoples R China
Hendrix, William
Ying, Weiqin
论文数: 0引用数: 0
h-index: 0
机构:
S China Univ Technol, Sch Software Engn, Guangzhou 510641, Guangdong, Peoples R ChinaGuangzhou Univ, Dept Comp Sci, Guangzhou, Guangdong, Peoples R China