Simpler and Better Approximation Algorithms for the Unweighted Minimum Label s-t Cut Problem

被引:0
|
作者
Peng Zhang
Bin Fu
Linqing Tang
机构
[1] Shandong University,School of Computer Science and Technology
[2] University of Texas-Pan American,Department of Computer Science
[3] Chinese Academy of Sciences,State Key Laboratory of Computer Science, Institute of Software
来源
Algorithmica | 2018年 / 80卷
关键词
Label cut; Minimum cut; Shortest path; Approximation algorithms; 68W25; 90C27;
D O I
暂无
中图分类号
学科分类号
摘要
Given a graph G=(V,E)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G=(V,E)$$\end{document} with a label set L={ℓ1,ℓ2,…,ℓq}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L = \{\ell _1, \ell _2, \ldots , \ell _q \}$$\end{document}, in which each edge has a label from L, and a source s∈V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s \in V$$\end{document} together with a sink t∈V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t \in V$$\end{document}, the Minimum Labels-tCut problem asks to pick a set L′⊆L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L' \subseteq L$$\end{document} of labels with minimized cardinality, such that the removal of all edges with labels in L′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L'$$\end{document} from G disconnects s and t. Let n=|V|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n = |V|$$\end{document} and m=|E|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m = |E|$$\end{document}. The previous best known approximation ratio for this problem in literature is O(m1/2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(m^{1/2})$$\end{document}. We present two simple and purely combinatorial approximation algorithms for the problem with ratios O(n2/3/OPT1/3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n^{2/3}/\text {OPT}^{1/3})$$\end{document} and O(m1/2/OPT1/2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(m^{1/2} / \text {OPT}^{1/2})$$\end{document}, where OPT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {OPT}$$\end{document} is the optimal value of the input instance. The former result gives the first approximation ratio which is sublinear in n for the problem, and in particular applies to the instances with dense graphs (e.g., m=Θ(n2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m = \varTheta (n^2)$$\end{document}). The latter result improves the previous ratio O(m1/2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(m^{1/2})$$\end{document}, as we can always assume that OPT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {OPT}$$\end{document} is a super-constant.
引用
收藏
页码:398 / 409
页数:11
相关论文
共 50 条
  • [1] Simpler and Better Approximation Algorithms for the Unweighted Minimum Label s-t Cut Problem
    Zhang, Peng
    Fu, Bin
    Tang, Linqing
    [J]. ALGORITHMICA, 2018, 80 (01) : 398 - 409
  • [2] Approximating Minimum Label s-t Cut via Linear Programming
    Tang, Linqing
    Zhang, Peng
    [J]. LATIN 2012: THEORETICAL INFORMATICS, 2012, 7256 : 655 - 666
  • [3] Minimum Label s-t Cut has large integrality gaps
    Zhang, Peng
    Tang, Linqing
    [J]. INFORMATION AND COMPUTATION, 2020, 275
  • [4] Better and Simpler Approximation Algorithms for the Stable Marriage Problem
    Kiraly, Zoltan
    [J]. ALGORITHMS - ESA 2008, 2008, 5193 : 623 - 634
  • [5] Better and Simpler Approximation Algorithms for the Stable Marriage Problem
    Kiraly, Zoltan
    [J]. ALGORITHMICA, 2011, 60 (01) : 3 - 20
  • [6] Better and Simpler Approximation Algorithms for the Stable Marriage Problem
    Zoltán Király
    [J]. Algorithmica, 2011, 60 : 3 - 20
  • [7] A new approximation algorithm for the unbalanced Min s-t Cut problem
    Zhang, Peng
    [J]. THEORETICAL COMPUTER SCIENCE, 2016, 609 : 658 - 665
  • [8] A New Approximation Algorithm for the Unbalanced Min s-t Cut Problem
    Zhang, Peng
    [J]. COMPUTING AND COMBINATORICS, COCOON 2014, 2014, 8591 : 346 - 356
  • [9] I/O efficient algorithms for the minimum cut problem on unweighted undirected graphs
    Bhushan, Alka
    Sajith, G.
    [J]. THEORETICAL COMPUTER SCIENCE, 2015, 575 : 33 - 41
  • [10] I/O Efficient Algorithms for the Minimum Cut Problem on Unweighted Undirected Graphs
    Bhushan, Alka
    Sajith, G.
    [J]. ALGORITHMS AND COMPUTATION, WALCOM 2014, 2014, 8344 : 188 - 199