A New Approximation Algorithm for the Unbalanced Min s-t Cut Problem

被引:0
|
作者
Zhang, Peng [1 ]
机构
[1] Shandong Univ, Sch Comp Sci & Technol, Jinan 250101, Peoples R China
来源
关键词
GRAPH;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Let k be an input parameter. An s-t cut is of k-size if its s-side has size at most k. The Min k-Size s-t Cut problem asks to find a k-size s-t cut with the minimum capacity. Being the unbalanced version of the famous Min s-t Cut problem, this problem is fundamental and has extensive applications, especially in community identification in social and information networks. In this paper, we give a new k+1/k+1-k*-approximation algorithm for the Min k-Size s-t Cut problem, where k* is the size of s-side of an optimal solution.
引用
收藏
页码:346 / 356
页数:11
相关论文
共 50 条
  • [1] A new approximation algorithm for the unbalanced Min s-t Cut problem
    Zhang, Peng
    [J]. THEORETICAL COMPUTER SCIENCE, 2016, 609 : 658 - 665
  • [2] Logical s-t Min-Cut Problem: An Extension to the Classic s-t Min-Cut Problem
    Valizadeh, Mohammad
    Tadayon, Mohammad Hesam
    [J]. IRANIAN JOURNAL OF MATHEMATICAL SCIENCES AND INFORMATICS, 2022, 17 (02): : 253 - 271
  • [3] An Improved Approximation Algorithm for the s-t Path Movement Problem
    Jindaluang, Wattana
    Chawachat, Jakarin
    Chouvatut, Varin
    Fakcharoenphol, Jittat
    Kantabutra, Sanpawat
    [J]. CHIANG MAI JOURNAL OF SCIENCE, 2017, 44 (01): : 279 - 286
  • [4] Simpler and Better Approximation Algorithms for the Unweighted Minimum Label s-t Cut Problem
    Peng Zhang
    Bin Fu
    Linqing Tang
    [J]. Algorithmica, 2018, 80 : 398 - 409
  • [5] Simpler and Better Approximation Algorithms for the Unweighted Minimum Label s-t Cut Problem
    Zhang, Peng
    Fu, Bin
    Tang, Linqing
    [J]. ALGORITHMICA, 2018, 80 (01) : 398 - 409
  • [6] A competitive study of the pseudoflow algorithm for the minimum s-t cut problem in vision applications
    Fishbain, B.
    Hochbaum, Dorit S.
    Mueller, Stefan
    [J]. JOURNAL OF REAL-TIME IMAGE PROCESSING, 2016, 11 (03) : 589 - 609
  • [7] Approximating a solution of the s-t max-cut problem with a deterministic annealing algorithm
    Dang, CY
    [J]. NEURAL NETWORKS, 2000, 13 (07) : 801 - 810
  • [8] s-t Paths Using the Min-Sum Algorithm
    Ruozzi, Nicholas
    Tatikonda, Sekhar
    [J]. 2008 46TH ANNUAL ALLERTON CONFERENCE ON COMMUNICATION, CONTROL, AND COMPUTING, VOLS 1-3, 2008, : 918 - 921
  • [9] Most vital vertices for the shortest s-t path problem: complexity and Branch-and-Cut algorithm
    Magnouche, Youcef
    Martin, Sebastien
    [J]. OPTIMIZATION LETTERS, 2020, 14 (08) : 2039 - 2053
  • [10] An LP-based 3/2-approximation algorithm for the s-t path graph Traveling Salesman Problem
    Gao, Zhihan
    [J]. OPERATIONS RESEARCH LETTERS, 2013, 41 (06) : 615 - 617