PRESERVATION OF OSCILLATIONS IN THE RUNGE-KUTTA METHOD FOR A TYPE OF ADVANCED DIFFERENTIAL EQUATION

被引:3
|
作者
Gao, Jianfang [1 ]
Shi, Tiantian [1 ]
Song, Fuyi [1 ]
机构
[1] Harbin Normal Univ, Sch Math Sci, Harbin 150025, Peoples R China
基金
黑龙江省自然科学基金;
关键词
Delay differential equation; Numerical solution; Oscillation; Runge-Kutta methods; NUMERICAL-SOLUTION; THETA-METHODS; PIECEWISE; STABILITY; SYSTEMS;
D O I
10.1080/01630563.2015.1070863
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article is concerned with the preservation of oscillations for differential equations with piecewise constant arguments of advanced type. By using the Runge-Kutta method, new oscillation conditions for numerical solution are established. We prove that oscillations of the analytic solution are preserved by the numerical solution in the Runge-Kutta method under some conditions. Some experiments are given.
引用
收藏
页码:1420 / 1430
页数:11
相关论文
共 50 条
  • [21] On the Preservation of Lyapunov Functions by Runge-Kutta Methods
    Calvo, M.
    Laburta, M. P.
    Montijano, J. I.
    Randez, L.
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS 1 AND 2, 2009, 1168 : 735 - 738
  • [22] On the preservation of invariants by explicit Runge-Kutta methods
    Calvo, M.
    Hernandez-Abreu, D.
    Montijano, J. I.
    Randez, L.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2006, 28 (03): : 868 - 885
  • [23] Oscillation of Runge-Kutta Methods for a Scalar Differential Equation with One Delay
    Wang, Qi
    Wen, Jiechang
    Fu, Fenglian
    INFORMATION COMPUTING AND APPLICATIONS, PT 1, 2012, 307 : 336 - +
  • [24] A Parallel Iteration of Runge-Kutta Method for Delay Differential Equations
    Ding, De-Qiong
    Ding, Xiao-Hua
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2010, 11 : 29 - 32
  • [25] A new adaptive Runge-Kutta method for stochastic differential equations
    Bastani, A. Foroush
    Hosseini, S. Mohammad
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 206 (02) : 631 - 644
  • [26] Preservation of quadratic invariants ofstochastic differential equations via Runge-Kutta methods
    Hong, Jialin
    Xu, Dongsheng
    Wang, Peng
    APPLIED NUMERICAL MATHEMATICS, 2015, 87 : 38 - 52
  • [27] Numerical solution of delay differential equation using two-derivative Runge-Kutta type method with Newton interpolation
    Senu, N.
    Lee, K. C.
    Ahmadian, A.
    Ibrahim, S. N. I.
    ALEXANDRIA ENGINEERING JOURNAL, 2022, 61 (08) : 5819 - 5835
  • [28] BILATERAL APPROXIMATIONS OF RUNGE-KUTTA TYPE
    LYASHCHENKO, NY
    GEZ, IF
    OLEINIK, AG
    DOKLADY AKADEMII NAUK SSSR, 1976, 226 (02): : 265 - 268
  • [29] Runge-Kutta Methods with Equation Dependent Coefficients
    Ixaru, L. Gr.
    NUMERICAL ANALYSIS AND ITS APPLICATIONS, NAA 2012, 2013, 8236 : 327 - 336
  • [30] Exponential Runge-Kutta methods for the Schrodinger equation
    Dujardin, Guillaume
    APPLIED NUMERICAL MATHEMATICS, 2009, 59 (08) : 1839 - 1857