A new adaptive Runge-Kutta method for stochastic differential equations

被引:11
|
作者
Bastani, A. Foroush [1 ]
Hosseini, S. Mohammad [1 ]
机构
[1] Tarbiat Modares Univ, Dept Math, Tehran, Iran
基金
美国国家科学基金会;
关键词
stochastic differential equation; adaptive time-stepping; forward-backward error estimation; Runge-Kutta method;
D O I
10.1016/j.cam.2006.08.012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we will present a new adaptive time stepping algorithm for strong approximation of stochastic ordinary differential equations. We will employ two different error estimation criteria for drift and diffusion terms of the equation, both of them based on forward and backward moves along the same time step. We will use step size selection mechanisms suitable for each of the two main regimes in the solution behavior, which correspond to domination of the drift-based local error estimator or diffusion-based one. Numerical experiments will show the effectiveness of this approach in the pathwise approximation of several standard test problems. (C) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:631 / 644
页数:14
相关论文
共 50 条
  • [1] The parallel waveform relaxation stochastic Runge-Kutta method for stochastic differential equations
    Xin, Xuan
    Ma, Qiang
    Ding, Xiaohua
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2021, 66 (1-2) : 439 - 463
  • [2] Stochastic Runge-Kutta Software Package for Stochastic Differential Equations
    Gevorkyan, M. N.
    Velieva, T. R.
    Korolkova, A. V.
    Kulyabov, D. S.
    Sevastyanov, L. A.
    DEPENDABILITY ENGINEERING AND COMPLEX SYSTEMS, 2016, 470 : 169 - 179
  • [3] Implicit stochastic Runge-Kutta methods for stochastic differential equations
    Burrage, K
    Tian, T
    BIT NUMERICAL MATHEMATICS, 2004, 44 (01) : 21 - 39
  • [4] Runge-Kutta Lawson schemes for stochastic differential equations
    Debrabant, Kristian
    Kvaerno, Anne
    Mattsson, Nicky Cordua
    BIT NUMERICAL MATHEMATICS, 2021, 61 (02) : 381 - 409
  • [5] RUNGE-KUTTA SCHEMES FOR BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS
    Chassagneux, Jean-Francois
    Crisan, Dan
    ANNALS OF APPLIED PROBABILITY, 2014, 24 (02): : 679 - 720
  • [6] Continuous Runge-Kutta methods for Stratonovich stochastic differential equations
    Debrabant, Kristian
    Roessler, Andreas
    MONTE CARLO AND QUASI-MONTE CARLO METHODS 2006, 2008, : 237 - 250
  • [7] Convergence of a New Adapting Runge-Kutta Method to Delay Differential Equations
    储钟武
    邱深山
    刘明珠
    Journal of Harbin Institute of Technology(New series), 1996, (04) : 1 - 4
  • [8] Runge-Kutta methods for numerical solution of stochastic differential equations
    Tocino, A
    Ardanuy, R
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2002, 138 (02) : 219 - 241
  • [9] Solving fuzzy differential equations by Runge-Kutta method
    Ghanaie, Z. Akbarzadeh
    Moghadam, M. Mohseni
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2011, 2 (02): : 208 - 221
  • [10] The Runge-Kutta method for hybrid fuzzy differential equations
    Pederson, S.
    Sambandham, M.
    NONLINEAR ANALYSIS-HYBRID SYSTEMS, 2008, 2 (02) : 626 - 634