A completely annotated whole slide image dataset of canine breast cancer to aid human breast cancer research

被引:38
|
作者
Aubreville, Marc [1 ]
Bertram, Christof A. [2 ]
Donovan, Taryn A. [3 ]
Marzahl, Christian [1 ]
Maier, Andreas [1 ]
Klopfleisch, Robert [2 ]
机构
[1] Friedrich Alexander Univ Erlangen Nurnberg, Comp Sci, Pattern Recognit Lab, Erlangen, Germany
[2] Free Univ Berlin, Inst Vet Pathol, Berlin, Germany
[3] Anim Med Ctr, Dept Anat Pathol, New York, NY USA
关键词
MITOSIS DETECTION; CARCINOMA; AGREEMENT; INDEX; GRADE;
D O I
10.1038/s41597-020-00756-z
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Canine mammary carcinoma (CMC) has been used as a model to investigate the pathogenesis of human breast cancer and the same grading scheme is commonly used to assess tumor malignancy in both. One key component of this grading scheme is the density of mitotic figures (MF). Current publicly available datasets on human breast cancer only provide annotations for small subsets of whole slide images (WSIs). We present a novel dataset of 21 WSIs of CMC completely annotated for MF. For this, a pathologist screened all WSIs for potential MF and structures with a similar appearance. A second expert blindly assigned labels, and for non-matching labels, a third expert assigned the final labels. Additionally, we used machine learning to identify previously undetected MF. Finally, we performed representation learning and two-dimensional projection to further increase the consistency of the annotations. Our dataset consists of 13,907 MF and 36,379 hard negatives. We achieved a mean F1-score of 0.791 on the test set and of up to 0.696 on a human breast cancer dataset.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Deep Learning-Based Breast Cancer Subtype Classification from Whole-Slide Images: Leveraging the BRACS Dataset
    Hernandez, Nerea
    Carrillo-Perez, Francisco
    Ortuno, Francisco M.
    Rojas, Ignacio
    BIOINFORMATICS AND BIOMEDICAL ENGINEERING, PT II, IWBBIO 2024, 2024, 14849 : 200 - 213
  • [22] Breast Cancer Trials biobank: Clinically annotated specimens for translational research
    Zdenkowski, Nicholas
    Badger, Heath
    ASIA-PACIFIC JOURNAL OF CLINICAL ONCOLOGY, 2021, 17 : 22 - 23
  • [23] Whole mammogram image improves breast cancer prediction.
    Jiang, Shu
    Colditz, Graham A.
    CANCER RESEARCH, 2022, 82 (12)
  • [24] AUTOMATED DIAGNOSIS OF BREAST CANCER USING DEEP LEARNING-BASED WHOLE SLIDE IMAGE ANALYSIS OF MOLECULAR BIOMARKERS
    Aboudessouki, A.
    Ali, Kh. M.
    Elsharkawy, M.
    Alksas, A.
    Mahmoud, A.
    Khalifa, F.
    Ghazal, M.
    Yousaf, J.
    Abu Khalifeh, H.
    El-Baz, A.
    2023 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2023, : 2965 - 2969
  • [25] A Multi-Stain Breast Cancer Histological Whole-Slide-Image Data Set from Routine Diagnostics
    Weitz, Philippe
    Valkonen, Masi
    Solorzano, Leslie
    Carr, Circe
    Kartasalo, Kimmo
    Boissin, Constance
    Koivukoski, Sonja
    Kuusela, Aino
    Rasic, Dusan
    Feng, Yanbo
    Pouplier, Sandra Sinius
    Sharma, Abhinav
    Eriksson, Kajsa Ledesma
    Latonen, Leena
    Laenkholm, Anne-Vibeke
    Hartman, Johan
    Ruusuvuori, Pekka
    Rantalainen, Mattias
    SCIENTIFIC DATA, 2023, 10 (01)
  • [26] Validation of Algorithmic Ki-67 Scoring in Breast Cancer Using Four Different Whole Slide Image Formats
    Solmaz-Yilmaz, Gizem
    Gumuskaya, Berrak
    Tokat, Fatma
    Soylemez-Akkurt, Tuce
    Dirilenoglu, Fikret
    Koy, Yazgi
    Demir, Derya
    Gurbuz, Begum Calim
    Uzel, Burak
    Keles, G. Evren
    LABORATORY INVESTIGATION, 2024, 104 (03) : S1623 - S1623
  • [27] A Multi-Stain Breast Cancer Histological Whole-Slide-Image Data Set from Routine Diagnostics
    Philippe Weitz
    Masi Valkonen
    Leslie Solorzano
    Circe Carr
    Kimmo Kartasalo
    Constance Boissin
    Sonja Koivukoski
    Aino Kuusela
    Dusan Rasic
    Yanbo Feng
    Sandra Sinius Pouplier
    Abhinav Sharma
    Kajsa Ledesma Eriksson
    Leena Latonen
    Anne-Vibeke Laenkholm
    Johan Hartman
    Pekka Ruusuvuori
    Mattias Rantalainen
    Scientific Data, 10
  • [28] Ensemble Deep Learning-Based Image Classification for Breast Cancer Subtype and Invasiveness Diagnosis from Whole Slide Image Histopathology
    Balasubramanian, Aadhi Aadhavan
    Al-Heejawi, Salah Mohammed Awad
    Singh, Akarsh
    Breggia, Anne
    Ahmad, Bilal
    Christman, Robert
    Ryan, Stephen T.
    Amal, Saeed
    CANCERS, 2024, 16 (12)
  • [29] MITNET: a novel dataset and a two-stage deep learning approach for mitosis recognition in whole slide images of breast cancer tissue
    Sercan Çayır
    Gizem Solmaz
    Huseyin Kusetogullari
    Fatma Tokat
    Engin Bozaba
    Sencer Karakaya
    Leonardo Obinna Iheme
    Eren Tekin
    Çisem Yazıcı
    Gülşah Özsoy
    Samet Ayaltı
    Cavit Kerem Kayhan
    Ümit İnce
    Burak Uzel
    Onur Kılıç
    Neural Computing and Applications, 2022, 34 : 17837 - 17851
  • [30] MITNET: a novel dataset and a two-stage deep learning approach for mitosis recognition in whole slide images of breast cancer tissue
    Cayir, Sercan
    Solmaz, Gizem
    Kusetogullari, Huseyin
    Tokat, Fatma
    Bozaba, Engin
    Karakaya, Sencer
    Iheme, Leonardo Obinna
    Tekin, Eren
    Yazici, Cisem
    Ozsoy, Gulsah
    Ayalti, Samet
    Kayhan, Cavit Kerem
    Ince, Umit
    Uzel, Burak
    Kilic, Onur
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (20): : 17837 - 17851