A Multi-Stain Breast Cancer Histological Whole-Slide-Image Data Set from Routine Diagnostics

被引:4
|
作者
Weitz, Philippe [1 ]
Valkonen, Masi [2 ]
Solorzano, Leslie [1 ]
Carr, Circe [2 ]
Kartasalo, Kimmo [1 ]
Boissin, Constance [1 ]
Koivukoski, Sonja [3 ]
Kuusela, Aino [2 ]
Rasic, Dusan [4 ,5 ]
Feng, Yanbo [1 ]
Pouplier, Sandra Sinius [4 ,10 ]
Sharma, Abhinav [1 ]
Eriksson, Kajsa Ledesma [1 ]
Latonen, Leena [3 ,6 ]
Laenkholm, Anne-Vibeke [4 ,10 ]
Hartman, Johan [7 ,8 ]
Ruusuvuori, Pekka [2 ,9 ]
Rantalainen, Mattias [1 ,8 ]
机构
[1] Karolinska Inst, Dept Med Epidemiol & Biostat, Stockholm, Sweden
[2] Univ Turku, Inst Biomed, Turku, Finland
[3] Univ Eastern Finland, Inst Biomed, Kuopio, Finland
[4] Zealand Univ Hosp, Dept Surg Pathol, Roskilde, Denmark
[5] Univ Copenhagen, Fac Hlth & Med Sci, Dept Clin Med, Copenhagen, Denmark
[6] Fdn Finnish Canc Inst, Helsinki, Finland
[7] Karolinska Inst, Dept Oncol & Pathol, Stockholm, Sweden
[8] Karolinska Univ Hosp, MedTechLabs, BioClinicum, Stockholm, Sweden
[9] Tampere Univ, Fac Med & Hlth Technol, Tampere, Finland
[10] Univ Copenhagen, Fac Hlth & Med Sci, Dept Clin Med, Copenhagen, Denmark
关键词
EXPRESSION;
D O I
10.1038/s41597-023-02422-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The analysis of FFPE tissue sections stained with haematoxylin and eosin (H & E) or immunohistochemistry (IHC) is essential for the pathologic assessment of surgically resected breast cancer specimens. IHC staining has been broadly adopted into diagnostic guidelines and routine workflows to assess the status of several established biomarkers, including ER, PGR, HER2 and KI67. Biomarker assessment can also be facilitated by computational pathology image analysis methods, which have made numerous substantial advances recently, often based on publicly available whole slide image (WSI) data sets. However, the field is still considerably limited by the sparsity of public data sets. In particular, there are no large, high quality publicly available data sets with WSIs of matching IHC and H & E-stained tissue sections from the same tumour. Here, we publish the currently largest publicly available data set of WSIs of tissue sections from surgical resection specimens from female primary breast cancer patients with matched WSIs of corresponding H & E and IHC-stained tissue, consisting of 4,212 WSIs from 1,153 patients.
引用
收藏
页数:6
相关论文
共 16 条
  • [1] A Multi-Stain Breast Cancer Histological Whole-Slide-Image Data Set from Routine Diagnostics
    Philippe Weitz
    Masi Valkonen
    Leslie Solorzano
    Circe Carr
    Kimmo Kartasalo
    Constance Boissin
    Sonja Koivukoski
    Aino Kuusela
    Dusan Rasic
    Yanbo Feng
    Sandra Sinius Pouplier
    Abhinav Sharma
    Kajsa Ledesma Eriksson
    Leena Latonen
    Anne-Vibeke Laenkholm
    Johan Hartman
    Pekka Ruusuvuori
    Mattias Rantalainen
    Scientific Data, 10
  • [2] Generating Region of Interests for Invasive Breast Cancer in Histopathological Whole-Slide-Image
    Patil, Shreyas Malakarjun
    Tong, Li
    Wang, May D.
    2020 IEEE 44TH ANNUAL COMPUTERS, SOFTWARE, AND APPLICATIONS CONFERENCE (COMPSAC 2020), 2020, : 723 - 728
  • [3] IHCSurv: Effective Immunohistochemistry Priors for Cancer Survival Analysis in Gigapixel Multi-stain Whole Slide Images
    Zhang, Yejia
    Chao, Hanqing
    Qiu, Zhongwei
    Liu, Wenbin
    Shen, Yixuan
    Sapkota, Nishchal
    Gu, Pengfei
    Chen, Danny Z.
    Lu, Le
    Yan, Ke
    Jin, Dakai
    Bian, Yun
    Jiang, Hui
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2024, PT IV, 2024, 15004 : 211 - 221
  • [4] Optimized Whole-Slide-Image H&E Stain Normalization: A Step Towards Big Data Integration in Digital Pathology
    Agraz, Jose L.
    Agraz, Carlos
    Chen, Andrew A.
    Rice, Charles
    Pozos, Robert S.
    Aelterman, Sven
    Tan, Amanda
    Viaene, Angela N.
    Nasrallah, MacLean P.
    Sharma, Parth
    Grenko, Caleb M.
    Kurc, Tahsin
    Saltz, Joel
    Feldman, Michael D.
    Akbari, Hamed
    Shinohara, Russell T.
    Bakas, Spyridon
    Wilson, Parker
    IEEE OPEN JOURNAL OF ENGINEERING IN MEDICINE AND BIOLOGY, 2025, 6 : 35 - 40
  • [5] Current Analysis Approaches and Performance Needs for Whole Slide Image Processing in Breast Cancer Diagnostics
    Pollanen, Irene
    Braithwaite, Billy
    Haataja, Keijo
    Ikonen, Tiia
    Toivanen, Pekka
    PROCEEDINGS INTERNATIONAL CONFERENCE ON EMBEDDED COMPUTER SYSTEMS - ARCHITECTURES, MODELING AND SIMULATION (SAMOS XV), 2015, : 319 - 325
  • [6] Deep learning for survival analysis in breast cancer with whole slide image data
    Liu, Huidong
    Kurc, Tahsin
    BIOINFORMATICS, 2022, 38 (14) : 3629 - 3637
  • [7] Data Fusion of Histological and Immunohistochemical Image Data for Breast Cancer Diagnostics using Transfer Learning
    Pradhan, Pranita
    Koehler, Katharina
    Guo, Shuxia
    Rosin, Olga
    Popp, Juergen
    Niendorf, Axel
    Bocklitz, Thomas
    PROCEEDINGS OF THE 10TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION APPLICATIONS AND METHODS (ICPRAM), 2021, : 495 - 506
  • [8] Artificial intelligence reveals features associated with breast cancer neoadjuvant chemotherapy responses from multi-stain histopathologic images
    Zhi Huang
    Wei Shao
    Zhi Han
    Ahmad Mahmoud Alkashash
    Carlo De la Sancha
    Anil V. Parwani
    Hiroaki Nitta
    Yanjun Hou
    Tongxin Wang
    Paul Salama
    Maher Rizkalla
    Jie Zhang
    Kun Huang
    Zaibo Li
    npj Precision Oncology, 7
  • [9] Artificial intelligence reveals features associated with breast cancer neoadjuvant chemotherapy responses from multi-stain histopathologic images
    Huang, Zhi
    Shao, Wei
    Han, Zhi
    Alkashash, Ahmad Mahmoud
    de la Sancha, Carlo
    Parwani, Anil V. V.
    Nitta, Hiroaki
    Hou, Yanjun
    Wang, Tongxin
    Salama, Paul
    Rizkalla, Maher
    Zhang, Jie
    Huang, Kun
    Li, Zaibo
    NPJ PRECISION ONCOLOGY, 2023, 7 (01)
  • [10] ScanNet: A Fast and Dense Scanning Framework for Metastastic Breast Cancer Detection from Whole-Slide Image
    Lin, Huangjing
    Chen, Hao
    Dou, Qi
    Wang, Liansheng
    Qin, Jing
    Heng, Pheng-Ann
    2018 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2018), 2018, : 539 - 546