Deep learning for survival analysis in breast cancer with whole slide image data

被引:11
|
作者
Liu, Huidong [1 ]
Kurc, Tahsin [2 ]
机构
[1] SUNY Stony Brook, Dept Comp Sci, Stony Brook, NY 11794 USA
[2] SUNY Stony Brook, Dept Biomed Informat, Stony Brook, NY 11794 USA
关键词
TUMOR-INFILTRATING LYMPHOCYTES; PATHOLOGY;
D O I
10.1093/bioinformatics/btac381
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Whole slide tissue images contain detailed data on the sub-cellular structure of cancer. Quantitative analyses of this data can lead to novel biomarkers for better cancer diagnosis and prognosis and can improve our understanding of cancer mechanisms. Such analyses are challenging to execute because of the sizes and complexity of whole slide image data and relatively limited volume of training data for machine learning methods. Results: We propose and experimentally evaluate a multi-resolution deep learning method for breast cancer survival analysis. The proposed method integrates image data at multiple resolutions and tumor, lymphocyte and nuclear segmentation results from deep learning models. Our results show that this approach can significantly improve the deep learning model performance compared to using only the original image data. The proposed approach achieves a c-index value of 0.706 compared to a c-index value of 0.551 from an approach that uses only color image data at the highest image resolution. Furthermore, when clinical features (sex, age and cancer stage) are combined with image data, the proposed approach achieves a c-index of 0.773.
引用
收藏
页码:3629 / 3637
页数:9
相关论文
共 50 条
  • [1] Deep Learning for Whole Slide Image Analysis: An Overview
    Dimitriou, Neofytos
    Arandjelovic, Ognjen
    Caie, Peter D.
    FRONTIERS IN MEDICINE, 2019, 6
  • [2] Weakly Supervised Deep Learning for Whole Slide Lung Cancer Image Analysis
    Wang, Xi
    Chen, Hao
    Gan, Caixia
    Lin, Huangjing
    Dou, Qi
    Tsougenis, Efstratios
    Huang, Qitao
    Cai, Muyan
    Heng, Pheng-Ann
    IEEE TRANSACTIONS ON CYBERNETICS, 2020, 50 (09) : 3950 - 3962
  • [3] Deep learning-based breast cancer grading and survival analysis on whole-slide histopathology images
    Wetstein, Suzanne C.
    de Jong, Vincent M. T.
    Stathonikos, Nikolas
    Opdam, Mark
    Dackus, Gwen M. H. E.
    Pluim, Josien P. W.
    van Diest, Paul J.
    Veta, Mitko
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [4] Deep learning-based breast cancer grading and survival analysis on whole-slide histopathology images
    Suzanne C. Wetstein
    Vincent M. T. de Jong
    Nikolas Stathonikos
    Mark Opdam
    Gwen M. H. E. Dackus
    Josien P. W. Pluim
    Paul J. van Diest
    Mitko Veta
    Scientific Reports, 12
  • [5] Robust whole slide image analysis for cervical cancer screening using deep learning
    Cheng, Shenghua
    Liu, Sibo
    Yu, Jingya
    Rao, Gong
    Xiao, Yuwei
    Han, Wei
    Zhu, Wenjie
    Lv, Xiaohua
    Li, Ning
    Cai, Jing
    Wang, Zehua
    Feng, Xi
    Yang, Fei
    Geng, Xiebo
    Ma, Jiabo
    Li, Xu
    Wei, Ziquan
    Zhang, Xueying
    Quan, Tingwei
    Zeng, Shaoqun
    Chen, Li
    Hu, Junbo
    Liu, Xiuli
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [6] Robust whole slide image analysis for cervical cancer screening using deep learning
    Shenghua Cheng
    Sibo Liu
    Jingya Yu
    Gong Rao
    Yuwei Xiao
    Wei Han
    Wenjie Zhu
    Xiaohua Lv
    Ning Li
    Jing Cai
    Zehua Wang
    Xi Feng
    Fei Yang
    Xiebo Geng
    Jiabo Ma
    Xu Li
    Ziquan Wei
    Xueying Zhang
    Tingwei Quan
    Shaoqun Zeng
    Li Chen
    Junbo Hu
    Xiuli Liu
    Nature Communications, 12
  • [7] AUTOMATED DIAGNOSIS OF BREAST CANCER USING DEEP LEARNING-BASED WHOLE SLIDE IMAGE ANALYSIS OF MOLECULAR BIOMARKERS
    Aboudessouki, A.
    Ali, Kh. M.
    Elsharkawy, M.
    Alksas, A.
    Mahmoud, A.
    Khalifa, F.
    Ghazal, M.
    Yousaf, J.
    Abu Khalifeh, H.
    El-Baz, A.
    2023 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2023, : 2965 - 2969
  • [8] A regularization term for slide correlation reduction in whole slide image analysis with deep learning
    Zhang, Hongrun
    Meng, Yanda
    Qian, Xuesheng
    Yang, Xiaoyun
    Coupland, Sarah E.
    Zheng, Yalin
    MEDICAL IMAGING WITH DEEP LEARNING, VOL 143, 2021, 143 : 812 - +
  • [9] A generalized deep learning framework for whole-slide image segmentation and analysis
    Mahendra Khened
    Avinash Kori
    Haran Rajkumar
    Ganapathy Krishnamurthi
    Balaji Srinivasan
    Scientific Reports, 11
  • [10] A generalized deep learning framework for whole-slide image segmentation and analysis
    Khened, Mahendra
    Kori, Avinash
    Rajkumar, Haran
    Krishnamurthi, Ganapathy
    Srinivasan, Balaji
    SCIENTIFIC REPORTS, 2021, 11 (01)