RICCI SOLITON AND RICCI ALMOST SOLITON WITHIN THE FRAMEWORK OF KENMOTSU MANIFOLD

被引:25
|
作者
Ghosh, A. [1 ]
机构
[1] Chandernagore Coll, Dept Math, Hooghly 712136, India
关键词
Kenmotsu manifold; Ricci almost soliton; warped product; CONTACT; COMPACT;
D O I
10.15330/cmp.11.1.59-69
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
First, we prove that if the Reeb vector field zeta of a Kenmotsu manifold M leaves the Ricci operator Q invariant, then M is Einstein. Next, we study Kenmotsu manifold whose metric represents a Ricci soliton and prove that it is expanding. Moreover, the soliton is trivial (Einstein) if either (i) V is a contact vector field, or (ii) the Reeb vector field zeta leaves the scalar curvature invariant. Finally, it is shown that if the metric of a Kenmotsu manifold represents a gradient Ricci almost soliton, then it is eta-Einstein and the soliton is expanding. We also exhibited some examples of Kenmotsu manifold that admit Ricci almost solitons.
引用
收藏
页码:59 / 69
页数:11
相关论文
共 50 条
  • [31] Characterization of Ricci Almost Soliton on Lorentzian Manifolds
    Li, Yanlin
    Kumara, Huchchappa A.
    Siddesha, Mallannara Siddalingappa
    Naik, Devaraja Mallesha
    SYMMETRY-BASEL, 2023, 15 (06):
  • [32] D-HOMOTHETICALLY DEFORMED KENMOTSU METRIC AS A RICCI SOLITON
    Kumar, D. L. Kiran
    Nagaraja, H. G.
    Venu, K.
    ANNALES MATHEMATICAE SILESIANAE, 2019, 33 (01) : 143 - 152
  • [33] Ricci Solitons in Kenmotsu Manifold
    Nagaraja, H. G.
    Venu, K.
    JOURNAL OF INFORMATICS AND MATHEMATICAL SCIENCES, 2016, 8 (01): : 29 - 36
  • [34] ALMOST YAMABE SOLITON AND ALMOST RICCI-BOURGUIGNON SOLITON WITH GEODESIC VECTOR FIELDS
    Azami, Shahroud
    MATEMATICKI VESNIK, 2024, 76 (03): : 210 - 217
  • [35] Ricci Soliton and η-Ricci Soliton on Generalized Sasakian Space Form
    Pahan, Sampa
    Dutta, Tamalika
    Bhattacharyya, Arindam
    FILOMAT, 2017, 31 (13) : 4051 - 4062
  • [36] SOME RESULTS IN η-RICCI SOLITON AND GRADIENT ρ-EINSTEIN SOLITON IN A COMPLETE RIEMANNIAN MANIFOLD
    Mondal, Chandan Kumar
    Shaikh, Absos Ali
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2019, 34 (04): : 1279 - 1287
  • [37] Ricci Soliton on (κ < 0, μ)-almost Cosymplectic Manifolds
    Rani, Savita
    Gupta, Ram Shankar
    KYUNGPOOK MATHEMATICAL JOURNAL, 2022, 62 (02): : 333 - 345
  • [38] Certain properties of η-Ricci soliton on η-Einstein para-Kenmotsu manifolds
    Almia, Priyanka
    Upreti, Jaya
    FILOMAT, 2023, 37 (28) : 9575 - 9585
  • [39] On almost generalized gradient Ricci-Yamabe soliton
    Kim, Byung Hak
    Choi, Jin Hyuk
    Lee, Sang Deok
    FILOMAT, 2024, 38 (11) : 3825 - 3837
  • [40] *-RICCI SOLITONS AND GRADIENT ALMOST *-RICCI SOLITONS ON KENMOTSU MANIFOLDS
    Venkatesha
    Naik, Devaraja Mallesha
    Kumara, H. Aruna
    MATHEMATICA SLOVACA, 2019, 69 (06) : 1447 - 1458