Characterization of Ricci Almost Soliton on Lorentzian Manifolds

被引:25
|
作者
Li, Yanlin [1 ]
Kumara, Huchchappa A. [2 ]
Siddesha, Mallannara Siddalingappa [3 ]
Naik, Devaraja Mallesha [4 ]
机构
[1] Hangzhou Normal Univ, Sch Math, Key Lab Cryptog Zhejiang Prov, Hangzhou 311121, Peoples R China
[2] BMS Inst Technol & Management, Dept Math, Bangalore 560064, India
[3] Jain, Dept Math, Global Campus, Bangalore 562112, India
[4] Kuvempu Univ, Dept Math, Shivamogga 577451, India
来源
SYMMETRY-BASEL | 2023年 / 15卷 / 06期
基金
中国国家自然科学基金;
关键词
Lorentzian manifolds; symmetric spaces; semi-symmetric metric connection; Ricci soliton; gradient Ricci almost soliton; 4-DIMENSIONAL CR SUBMANIFOLDS; RIEMANNIAN-MANIFOLDS; SURFACES; CURVATURE; COMPACT; CURVES;
D O I
10.3390/sym15061175
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Ricci solitons (RS) have an extensive background in modern physics and are extensively used in cosmology and general relativity. The focus of this work is to investigate Ricci almost solitons (RAS) on Lorentzian manifolds with a special metric connection called a semi-symmetric metric u-connection (SSM-connection). First, we show that any quasi-Einstein Lorentzian manifold having a SSM-connection, whose metric is RS, is Einstein manifold. A similar conclusion also holds for a Lorentzian manifold with SSM-connection admitting RS whose soliton vector Z is parallel to the vector u. Finally, we examine the gradient Ricci almost soliton (GRAS) on Lorentzian manifold admitting SSM-connection.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] η-RICCI SOLITON AND ALMOST η-RICCI SOLITON ON ALMOST coKAHLER MANIFOLDS
    Venkatesha
    Chidananda, S.
    ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2021, 90 (02): : 217 - 230
  • [2] Characterization of Almost η-Ricci–Yamabe Soliton and Gradient Almost η-Ricci–Yamabe Soliton on Almost Kenmotsu Manifolds
    Somnath Mondal
    Santu Dey
    Arindam Bhattacharyya
    Acta Mathematica Sinica, English Series, 2023, 39 : 728 - 748
  • [3] Characterization of Almost η-Ricci–Yamabe Soliton and Gradient Almost η-Ricci–Yamabe Soliton on Almost Kenmotsu Manifolds
    Somnath MONDAL
    Santu DEY
    Arindam BHATTACHARYYA
    Acta Mathematica Sinica,English Series, 2023, (04) : 728 - 748
  • [4] Characterization of Almost η-Ricci-Yamabe Soliton and Gradient Almost η-Ricci-Yamabe Soliton on Almost Kenmotsu Manifolds
    Mondal, Somnath
    Dey, Santu
    Bhattacharyya, Arindam
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2023, 39 (04) : 728 - 748
  • [5] *-Ricci soliton on (κ, μ)′-almost Kenmotsu manifolds
    Dai, Xinxin
    Zhao, Yan
    De, Uday Chand
    OPEN MATHEMATICS, 2019, 17 : 874 - 882
  • [6] Almost* -Ricci soliton on paraKenmotsu manifolds
    Venkatesha, V.
    Kumara, H. Aruna
    Naik, Devaraja Mallesha
    ARABIAN JOURNAL OF MATHEMATICS, 2020, 9 (03) : 715 - 726
  • [7] A NOTE ON ALMOST RICCI SOLITON AND GRADIENT ALMOST RICCI SOLITON ON PARA-SASAKIAN MANIFOLDS
    De, Krishnendu
    De, Uday Chand
    KOREAN JOURNAL OF MATHEMATICS, 2020, 28 (04): : 739 - 751
  • [8] Characterization of almost *-conformal η-Ricci soliton on para-Kenmotsu manifolds
    Dey, Santu
    Uddin, Siraj
    FILOMAT, 2023, 37 (11) : 3601 - 3614
  • [9] Ricci Soliton on (κ < 0, μ)-almost Cosymplectic Manifolds
    Rani, Savita
    Gupta, Ram Shankar
    KYUNGPOOK MATHEMATICAL JOURNAL, 2022, 62 (02): : 333 - 345
  • [10] *-η-Ricci Soliton and Gradient Almost *-η-Ricci Soliton Within the Framework of Para-Kenmotsu Manifolds
    Dey, Santu
    Turki, Nasser Bin
    FRONTIERS IN PHYSICS, 2022, 10