Characterization of Ricci Almost Soliton on Lorentzian Manifolds

被引:25
|
作者
Li, Yanlin [1 ]
Kumara, Huchchappa A. [2 ]
Siddesha, Mallannara Siddalingappa [3 ]
Naik, Devaraja Mallesha [4 ]
机构
[1] Hangzhou Normal Univ, Sch Math, Key Lab Cryptog Zhejiang Prov, Hangzhou 311121, Peoples R China
[2] BMS Inst Technol & Management, Dept Math, Bangalore 560064, India
[3] Jain, Dept Math, Global Campus, Bangalore 562112, India
[4] Kuvempu Univ, Dept Math, Shivamogga 577451, India
来源
SYMMETRY-BASEL | 2023年 / 15卷 / 06期
基金
中国国家自然科学基金;
关键词
Lorentzian manifolds; symmetric spaces; semi-symmetric metric connection; Ricci soliton; gradient Ricci almost soliton; 4-DIMENSIONAL CR SUBMANIFOLDS; RIEMANNIAN-MANIFOLDS; SURFACES; CURVATURE; COMPACT; CURVES;
D O I
10.3390/sym15061175
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Ricci solitons (RS) have an extensive background in modern physics and are extensively used in cosmology and general relativity. The focus of this work is to investigate Ricci almost solitons (RAS) on Lorentzian manifolds with a special metric connection called a semi-symmetric metric u-connection (SSM-connection). First, we show that any quasi-Einstein Lorentzian manifold having a SSM-connection, whose metric is RS, is Einstein manifold. A similar conclusion also holds for a Lorentzian manifold with SSM-connection admitting RS whose soliton vector Z is parallel to the vector u. Finally, we examine the gradient Ricci almost soliton (GRAS) on Lorentzian manifold admitting SSM-connection.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] A note on rigidity of the almost Ricci soliton
    Barros, Abdenago
    Gomes, Jose N.
    Ribeiro, Ernani, Jr.
    ARCHIV DER MATHEMATIK, 2013, 100 (05) : 481 - 490
  • [22] Ricci soliton on (κ, μ)-almost cosymplectic manifold
    Rani, Savita
    Gupta, Ram Shankar
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2023, 30 (03) : 354 - 368
  • [23] RICCI SOLITON ON MANIFOLDS WITH COSYMPLECTIC METRIC
    Rani, Savita
    Gupta, Ram Shankar
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2022, 84 (01): : 89 - 98
  • [24] RICCI SOLITON ON MANIFOLDS WITH COSYMPLECTIC METRIC
    Rani, Savita
    Gupta, Ram Shankar
    UPB Scientific Bulletin, Series A: Applied Mathematics and Physics, 2022, 84 (01): : 89 - 98
  • [25] MANIFOLDS OF ALMOST NONNEGATIVE RICCI CURVATURE
    YAMAGUCHI, T
    JOURNAL OF DIFFERENTIAL GEOMETRY, 1988, 28 (01) : 157 - 167
  • [26] ON ALMOST QUASI RICCI SYMMETRIC MANIFOLDS
    Kim, Jaeman
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2020, 35 (02): : 603 - 611
  • [27] On the Ricci symmetry of almost Kenmotsu manifolds
    Dey, Dibakar
    TAMKANG JOURNAL OF MATHEMATICS, 2022, 53 (03): : 227 - 236
  • [28] Almost η-Ricci solitons on Kenmotsu manifolds
    Patra, Dhriti Sundar
    Rovenski, Vladimir
    EUROPEAN JOURNAL OF MATHEMATICS, 2021, 7 (04) : 1753 - 1766
  • [29] The Ricci tensor of almost parahermitian manifolds
    Conti, Diego
    Rossi, Federico A.
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2018, 53 (04) : 467 - 501
  • [30] The Ricci tensor of almost parahermitian manifolds
    Diego Conti
    Federico A. Rossi
    Annals of Global Analysis and Geometry, 2018, 53 : 467 - 501