Automated multidimensional phenotypic profiling using large public microarray repositories

被引:20
|
作者
Xu, Min [1 ]
Li, Wenyuan [1 ]
James, Gareth M. [2 ]
Mehan, Michael R. [1 ]
Zhou, Xianghong Jasmine [1 ]
机构
[1] Univ So Calif, Dept Biol Sci, Los Angeles, CA 90089 USA
[2] Univ So Calif, Marshall Sch Business, Los Angeles, CA 90089 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
genotype-phenotype association; phenotype prediction; phenotype profiling; REFRACTORY-ANEMIA; PHENOME; LEUKEMIA; NETWORK;
D O I
10.1073/pnas.0900883106
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Phenotypes are complex, and difficult to quantify in a high-throughput fashion. The lack of comprehensive phenotype data can prevent or distort genotype-phenotype mapping. Here, we describe "PhenoProfiler,'' a computational method that enables in silico phenotype profiling. Drawing on the principle that similar gene expression patterns are likely to be associated with similar phenotype patterns, PhenoProfiler supplements the missing quantitative phenotype information for a given microarray dataset based on other well-characterized microarray datasets. We applied our method to 587 human microarray datasets covering >14,000 samples, and confirmed that the predicted phenotype profiles are highly consistent with true phenotype descriptions. PhenoProfiler offers several unique capabilities: (i) automated, multidimensional phenotype profiling, facilitating the analysis and treatment design of complex diseases; (ii) the extrapolation of phenotype profiles beyond provided classes; and (iii) the detection of confounding phenotype factors that could otherwise bias biological inferences. Finally, because no direct comparisons are made between gene expression values from different datasets, the method can use the entire body of cross-platform microarray data. This work has produced a compendium of phenotype profiles for the National Center for Biotechnology Information GEO datasets, which can facilitate an unbiased understanding of the transcriptome-phenome mapping. The continued accumulation of microarray data will further increase the power of PhenoProfiler, by increasing the variety and the quality of phenotypes to be profiled.
引用
收藏
页码:12323 / 12328
页数:6
相关论文
共 50 条
  • [31] Integrating high-resolution single cell gene expression data with a public microarray repository permits automated functional profiling of progenitor cell populations
    Januszyk, Michael
    Sorkin, Michael
    Rennert, Robert C.
    Gurtner, Geoffrey C.
    JOURNAL OF THE AMERICAN COLLEGE OF SURGEONS, 2012, 215 (03) : S95 - S95
  • [32] Gene profiling of colonic serrated adenomas by using oligonucleotide microarray
    Kim, Kyongrae
    Park, Ungchae
    Wang, Joonho
    Lee, Jaedong
    Park, Seunghwa
    Kim, Sangyoon
    Choi, Dongkug
    Kim, Changil
    Park, Jiyoung
    INTERNATIONAL JOURNAL OF COLORECTAL DISEASE, 2008, 23 (06) : 569 - 580
  • [33] Expression profiling using a hexamer-based universal microarray
    Matthew E Roth
    Li Feng
    Kevin J McConnell
    Paul J Schaffer
    Cesar E Guerra
    Jason P Affourtit
    Kevin R Piper
    Lorri Guccione
    Jayashree Hariharan
    Maura J Ford
    Stephen W Powell
    Harish Krishnaswamy
    Jennifer Lane
    Lisa Guccione
    Gino Intrieri
    Jane S Merkel
    Clotilde Perbost
    Anthony Valerio
    Brenda Zolla
    Carol D Graham
    Jonathan Hnath
    Chris Michaelson
    Rixin Wang
    Baoge Ying
    Conrad Halling
    Craig E Parman
    Debasish Raha
    Brent Orr
    Barbara Jedrzkiewicz
    Ji Liao
    Anton Tevelev
    Martin J Mattessich
    David M Kranz
    Michelle Lacey
    Joseph C Kaufman
    Junhyong Kim
    Darin R Latimer
    Paul M Lizardi
    Nature Biotechnology, 2004, 22 : 418 - 426
  • [34] Gene expression profiling in skeletal muscle using a dedicated microarray
    Campanaro, S
    Romualdi, C
    De Pittà, C
    Fanin, M
    Celegato, B
    Pacchioni, B
    Trevisan, S
    Laveder, P
    Toppo, S
    Cagnin, S
    Valle, G
    Angelini, C
    Lanfranchi, G
    MINERVA BIOTECNOLOGICA, 2002, 14 (3-4) : 273 - 279
  • [35] Gene expression profiling in dysferlinopathies using a dedicated muscle microarray
    Campanaro, S
    Romualdi, C
    Fanin, M
    Celegato, B
    Pacchioni, B
    Trevisan, S
    Laveder, P
    De Pittà, C
    Pegoraro, E
    Hayashi, YK
    Valle, G
    Angelini, C
    Lanfranchi, G
    HUMAN MOLECULAR GENETICS, 2002, 11 (26) : 3283 - 3298
  • [36] Affinity profiling using the peptide microarray technology: A case study
    Tapia, Victor
    Bongartz, Juliane
    Schutkowski, Mike
    Bruni, Nicole
    Weiser, Armin
    Ay, Bernhard
    Volkmer, Rudolf
    Or-Guil, Michal
    ANALYTICAL BIOCHEMISTRY, 2007, 363 (01) : 108 - 118
  • [37] Profiling the Live Fungal Glycans using Cell Lectin Microarray
    Shibazaki, Azusa
    Tateno, Hiroaki
    Hirabayashi, Jun
    Gonoi, Tohru
    GLYCOBIOLOGY, 2010, 20 (11) : 1535 - 1535
  • [38] Gene profiling of colonic serrated adenomas by using oligonucleotide microarray
    Kyongrae Kim
    Ungchae Park
    Joonho Wang
    Jaedong Lee
    Seunghwa Park
    Sangyoon Kim
    Dongkug Choi
    Changil Kim
    Jiyoung Park
    International Journal of Colorectal Disease, 2008, 23 : 569 - 580
  • [39] Profiling autoimmunity markers in autoimmune diseases using antigen microarray
    Almehairi, A. O.
    Negm, O.
    Todd, I.
    Fairclough, L.
    Tighe, P.
    IMMUNOLOGY, 2013, 140 : 56 - 56
  • [40] UPD Detection Using Homozygosity Profiling With a SNP Genotyping Microarray
    Papenhausen, Peter
    Schwartz, Stuart
    Risheg, Hiba
    Keitges, Elisabeth
    Gadi, Inder
    Burnside, Rachel D.
    Jaswaney, Vikram
    Pappas, John
    Pasion, Romela
    Friedman, Kenneth
    Tepperberg, James
    AMERICAN JOURNAL OF MEDICAL GENETICS PART A, 2011, 155A (04) : 757 - 768