Automated multidimensional phenotypic profiling using large public microarray repositories

被引:20
|
作者
Xu, Min [1 ]
Li, Wenyuan [1 ]
James, Gareth M. [2 ]
Mehan, Michael R. [1 ]
Zhou, Xianghong Jasmine [1 ]
机构
[1] Univ So Calif, Dept Biol Sci, Los Angeles, CA 90089 USA
[2] Univ So Calif, Marshall Sch Business, Los Angeles, CA 90089 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
genotype-phenotype association; phenotype prediction; phenotype profiling; REFRACTORY-ANEMIA; PHENOME; LEUKEMIA; NETWORK;
D O I
10.1073/pnas.0900883106
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Phenotypes are complex, and difficult to quantify in a high-throughput fashion. The lack of comprehensive phenotype data can prevent or distort genotype-phenotype mapping. Here, we describe "PhenoProfiler,'' a computational method that enables in silico phenotype profiling. Drawing on the principle that similar gene expression patterns are likely to be associated with similar phenotype patterns, PhenoProfiler supplements the missing quantitative phenotype information for a given microarray dataset based on other well-characterized microarray datasets. We applied our method to 587 human microarray datasets covering >14,000 samples, and confirmed that the predicted phenotype profiles are highly consistent with true phenotype descriptions. PhenoProfiler offers several unique capabilities: (i) automated, multidimensional phenotype profiling, facilitating the analysis and treatment design of complex diseases; (ii) the extrapolation of phenotype profiles beyond provided classes; and (iii) the detection of confounding phenotype factors that could otherwise bias biological inferences. Finally, because no direct comparisons are made between gene expression values from different datasets, the method can use the entire body of cross-platform microarray data. This work has produced a compendium of phenotype profiles for the National Center for Biotechnology Information GEO datasets, which can facilitate an unbiased understanding of the transcriptome-phenome mapping. The continued accumulation of microarray data will further increase the power of PhenoProfiler, by increasing the variety and the quality of phenotypes to be profiled.
引用
收藏
页码:12323 / 12328
页数:6
相关论文
共 50 条
  • [21] Profiling of neoplasms of the pancreas using microarray-technology
    Bauer, Andrea
    Bier, Melanie
    Wirtz, Martin
    Kleeff, Joerg
    Friess, Helmut
    Hoheisel, Joerg D.
    EJC SUPPLEMENTS, 2006, 4 (06): : 32 - 32
  • [22] Profiling of chemical compounds function by using microarray data
    Goda, H
    PLANT AND CELL PHYSIOLOGY, 2005, 46 : S16 - S16
  • [23] Glycan profiling of gestational choriocarcinoma using a lectin microarray
    Kobayashi, Yusuke
    Masuda, Kenta
    Banno, Kouji
    Kobayashi, Nana
    Umene, Kiyoko
    Nogami, Yuya
    Tsuji, Kosuke
    Ueki, Arisa
    Nomura, Hiroyuki
    Sato, Kenji
    Tominaga, Eiichiro
    Shimizu, Takatsune
    Saya, Hideyuki
    Aoki, Daisuke
    ONCOLOGY REPORTS, 2014, 31 (03) : 1121 - 1126
  • [24] Gene expression profiling in immune cells using Microarray
    Granucci, F
    Castagnoli, PR
    Rogge, L
    Sinigaglia, F
    INTERNATIONAL ARCHIVES OF ALLERGY AND IMMUNOLOGY, 2001, 126 (04) : 257 - 266
  • [25] Glycan profiling of endometrial cancers using lectin microarray
    Nishijima, Yoshihiro
    Toyoda, Masashi
    Yamazaki-Inoue, Mayu
    Sugiyama, Taro
    Miyazawa, Masaki
    Muramatsu, Toshinari
    Nakamura, Kyoko
    Narimatsu, Hisashi
    Umezawa, Akihiro
    Mikami, Mikio
    GENES TO CELLS, 2012, 17 (10) : 826 - 836
  • [26] Analyses of Aloe polysaccharides using carbohydrate microarray profiling
    Ahl, Louise I. (louise.ahl@snm.ku.dk), 1720, AOAC International (101):
  • [27] Exploring genotypic and phenotypic diversity of microbes using microarray approaches
    Mukherjee, A
    Jackson, SA
    LeClerc, JE
    Cebula, TA
    TOXICOLOGY MECHANISMS AND METHODS, 2006, 16 (2-3) : 121 - 128
  • [28] Public Transit Passenger Profiling by Using Large-Scale Smart Card Data
    Wang, Lewen
    Wang, Yu
    Sun, Xiaofei
    Wu, Yizheng
    Peng, Fei
    Chen, Chun-Hung Peter
    Song, Guohua
    JOURNAL OF TRANSPORTATION ENGINEERING PART A-SYSTEMS, 2023, 149 (04)
  • [29] AUTOMATED MICROARRAY PROCESSING USING PRODIGY™ INSTRUMENT.
    Dinauer, David
    Passey, Ben
    Scott, Paul
    Charvill, Dave
    Dees, Bob
    Verner, Andrei
    Bunce, Mike
    HUMAN IMMUNOLOGY, 2008, 69 : S72 - S72
  • [30] Phenotypic profiling of Aurora inhibitors using the OncoPanel™ platform
    Galdieri, Luciano
    Lipner, Justin
    Garner, Steven M.
    Krings, Jillian
    Hoehn, Emily
    Lahm, Brendan
    Collver, Kaleb
    Powers, Kaitlyne
    King, Alastair J.
    CANCER RESEARCH, 2023, 83 (07)