SOFC stack coupled with dry reforming

被引:37
|
作者
Barelli, L. [1 ]
Bidini, G. [1 ]
Cinti, G. [1 ]
Gallorini, F. [2 ]
Poeniz, M. [3 ]
机构
[1] Univ Perugia, Dept Engn, Via G Duranti 1-A4, I-06125 Perugia, Italy
[2] Univ Naples Federico II, Dept Engn, Centro Direzionale Isola c4, I-80143 Naples, Italy
[3] EBZ GmbH, Ravensburg, Germany
关键词
Dry reforming; SOFC; Stack Cogeneration heat and power (CHP); Experimental; OXIDE FUEL-CELLS; HYDROGEN-PRODUCTION; CARBON-MONOXIDE; SE-SR; METHANE; PERFORMANCE; ANODES; SYNGAS; SYSTEM; STABILITY;
D O I
10.1016/j.apenergy.2016.08.167
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The study proposes an innovative CHP system based on the coupling of carbon dioxide dry reforming (CDR) and solid oxide fuel cell (SOFC) technology. To supply CO2 at the CDR unit, increasing at the same time the overall utilization factor, SOFC anode off-gases are recycled for fuel reforming. In the CDR unit, in fact, the CO2 in the anodic exhausts reacts with feeding low carbon fuels (in this case natural gas) producing hydrogen and carbon monoxide for the SOFC feeding, thus allowing an internal CO2 reuse. In particular, the SOFC, characterized by high operating temperatures and significant recoverable heat, guarantees suitable temperature of the CDR process, highly endothermic. Moreover, compared to traditional CDR applications, lower temperatures are acceptable because SOFC tolerates feeding gas containing limited amounts of CO and CH4. According to this concept, the SOFC stack can be conveniently fed by a dry reformer reactor. The present study addresses the experimental characterization of SOFC short-stacks performance, in terms of produced power and thermal behavior, when fed by different fuel mixtures produced through dry reforming. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:498 / 507
页数:10
相关论文
共 50 条
  • [31] Biogas reforming process investigation for SOFC application
    Chiodo, V.
    Galvagno, A.
    Lanzini, A.
    Papurello, D.
    Urbani, F.
    Santarelli, M.
    Freni, S.
    ENERGY CONVERSION AND MANAGEMENT, 2015, 98 : 252 - 258
  • [32] A coupled 3D thermofluid-thermomechanical analysis of a planar type production scale SOFC stack
    Peksen, M.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2011, 36 (18) : 11914 - 11928
  • [33] Performance of a SOFC fed by ethanol reforming products
    Galvita, VV
    Belyaev, VD
    Frumin, AV
    Demin, AK
    Tsiakaras, PE
    Sobyanin, VA
    SOLID STATE IONICS, 2002, 152 : 551 - 554
  • [34] Internal Reforming Kinetics in SOFC-Anodes
    Kromp, A.
    Leonide, A.
    Timmermann, H.
    Weber, A.
    Ivers-Tiffee, E.
    IONIC AND MIXED CONDUCTING CERAMICS 7, 2010, 28 (11): : 205 - 215
  • [35] Dynamic analysis of direct internal reforming in a SOFC stack with electrolyte-supported cells using a quasi-1D model
    Kupecki, Jakub
    Motylinski, Konrad
    Milewski, Jaroslaw
    APPLIED ENERGY, 2018, 227 : 198 - 205
  • [36] Effect of internal hydrocarbon reforming during coupled operation of a biomass gasifier with hot gas cleaning and SOFC stacks
    Fischer, Felix
    Hauser, Michael
    Hauck, Maximilian
    Herrmann, Stephan
    Fendt, Sebastian
    Jeong, Hyeondeok
    Lenser, Christian
    Menzler, Norbert H.
    Spliethoff, Hartmut
    ENERGY SCIENCE & ENGINEERING, 2019, 7 (04) : 1140 - 1153
  • [37] Anomalous Transport of Thermal Disturbance in a Planar SOFC Stack
    Kulikovsky, A. A.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2010, 157 (04) : B572 - B579
  • [38] Nondestructive cell evaluation techniques in SOFC stack manufacturing
    Wunderlich, C.
    SMART MATERIALS AND NONDESTRUCTIVE EVALUATION FOR ENERGY SYSTEMS 2016, 2016, 9806
  • [39] Nonlinear modeling of a SOFC stack based on ANFIS identification
    Wu, Xiao-Juan
    Zhu, Xin-Jian
    Cao, Guang-Yi
    Tu, Heng-Yong
    SIMULATION MODELLING PRACTICE AND THEORY, 2008, 16 (04) : 399 - 409
  • [40] Production and Reliability Oriented SOFC Cell and Stack Design
    Hauth, M.
    Lawlor, V.
    Cartellieri, P.
    Zechmeister, C.
    Wolff, S.
    Bucher, C.
    Malzbender, J.
    Wei, J.
    Weber, A.
    Tsotridis, G.
    Frandsen, H. L.
    Kwok, K.
    Molla, T. T.
    Wuillemin, Z.
    Van Herle, J.
    Greco, F.
    Cornu, T.
    Nakajo, A.
    Atkinson, A.
    Vandeperre, L.
    Wang, X.
    SOLID OXIDE FUEL CELLS 15 (SOFC-XV), 2017, 78 (01): : 2231 - 2249